. Space Industry and Business News .




.
CHIP TECH
Zinc oxide microwires improve the performance of light-emitting diodes
by Staff Writers
Atlanta GA (SPX) Nov 02, 2011

A light-emitting diode (LED) whose performance has been enhanced through the piezo-phototronic effect is studied in the laboratory of Regents professor Zhong Lin Wang. Credit: Georgia Tech Photo: Gary Meek.

Researchers have used zinc oxide microwires to significantly improve the efficiency at which gallium nitride light-emitting diodes (LED) convert electricity to ultraviolet light. The devices are believed to be the first LEDs whose performance has been enhanced by the creation of an electrical charge in a piezoelectric material using the piezo-phototronic effect.

By applying mechanical strain to the microwires, researchers at the Georgia Institute of Technology created a piezoelectric potential in the wires, and that potential was used to tune the charge transport and enhance carrier injection in the LEDs.

This control of an optoelectronic device with piezoelectric potential, known as piezo-phototronics, represents another example of how materials that have both piezoelectric and semiconducting properties can be controlled mechanically.

"By utilizing this effect, we can enhance the external efficiency of these devices by a factor of more than four times, up to eight percent," said Zhong Lin Wang, a Regents professor in the Georgia Tech School of Materials Science and Engineering.

"From a practical standpoint, this new effect could have many impacts for electro-optical processes - including improvements in the energy efficiency of lighting devices."

Details of the research were reported in the Sept. 14 issue of the journal Nano Letters. The research was sponsored by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Department of Energy (DOE). In addition to Wang, the research team mainly included Qing Yang, a visiting scientist at Georgia Tech from the Department of Optical Engineering at Zhejiang University in China.

Because of the polarization of ions in the crystals of piezoelectric materials such as zinc oxide, mechanically compressing or otherwise straining structures made from the materials creates a piezoelectric potential - an electrical charge.

In the gallium nitride LEDs, the researchers used the local piezoelectric potential to tune the charge transport at the p-n junction.

The effect was to increase the rate at which electrons and holes recombined to generate photons, enhancing the external efficiency of the device through improved light emission and higher injection current.

"The effect of the piezopotential on the transport behavior of charge carriers is significant due to its modification of the band structure at the junction," Wang explained.

The zinc oxide wires form the "n" component of a p-n junction, with the gallium nitride thin film providing the "p" component. Free carriers were trapped at this interface region in a channel created by the piezoelectric charge formed by compressing the wires.

Traditional LED designs use structures such as quantum wells to trap electrons and holes, which must remain close together long enough to recombine. The longer that electrons and holes can be retained in proximity to one another, the higher the efficiency of the LED device will ultimately be.

The devices produced by the Georgia Tech team increased their emission intensity by a factor of 17 and boosted injection current by a factor of four when compressive strain of 0.093 percent was applied to the zinc oxide wire. That improved conversion efficiency by as much as a factor of 4.25.

The LEDs fabricated by the research team produced emissions at ultraviolet frequencies (about 390 nanometers), but Wang believes the frequencies can be extended into the visible light range for a variety of optoelectronic devices.

"These devices are important for today's focus on green and renewable energy technology," he said.

In the experimental devices, a single zinc oxide micro/nanowire LED was fabricated by manipulating a wire on a trenched substrate.

A magnesium-doped gallium nitride film was grown epitaxially on a sapphire substrate by metalorganic chemical vapor deposition, and was used to form a p-n junction with the zinc oxide wire.

A sapphire substrate was used as the cathode that was placed side-by-side with the gallium nitride substrate with a well-controlled gap. The wire was placed across the gap in close contact with the gallium nitride.

Transparent polystyrene tape was used to cover the nanowire. A force was then applied to the tape by an alumina rod connected to a piezo nanopositioning stage, creating the strain in the wire.

The researchers then studied the change in light emission produced by varying the amount of strain in 20 different devices.

Half of the devices showed enhanced efficiency, while the others - fabricated with the opposite orientation of the microwires - showed a decrease. This difference was due to the reversal in the sign of the piezopotential because of the switch of the microwire orientation from +c to -c.

High-efficiency ultraviolet emitters are needed for applications in chemical, biological, aerospace, military and medical technologies.

Although the internal quantum efficiencies of these LEDs can be as high as 80 percent, the external efficiency for a conventional single p-n junction thin-film LED is currently only about three percent.

Beyond LEDs, Wang believes the approach pioneered in this study can be applied to other optical devices that are controlled by electrical fields.

"This opens up a new field of using the piezoelectric effect to tune opto-electronic devices," Wang said. "Improving the efficiency of LED lighting could ultimately be very important, bringing about significant energy savings because so much of the world's energy is used for lighting."

Related Links
Georgia Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
A SHARP New Microscope for the Next Generation of Microchips
Berkeley CA (SPX) Nov 02, 2011
Moore's Law, hardly a law but undeniably a persistent trend, says that every year and a half, the number of transistors that fit on a chip roughly doubles. It's why electronics - from smart phones to flat screens, from MP4 players to movie cameras, from tablets to supercomputers - grow ever more varied, powerful, and compact, but also ever less expensive. Whether the trend can continue unt ... read more


CHIP TECH
News Corp. net profit down five percent

Spin lasers in the fast lane

An important aspect of structural design of super-tall buildings and structures

Tech-obsessed Koreans drive smartphone boom

CHIP TECH
AEHF-1 Satellite Arrives at Its Operational Orbit After 14-Month Journey

China suspect in US satellite interference: report

Emirates seek French military satellite

First MEADS Battle Manager Begins Integration Testing in the United States

CHIP TECH
Vega getting ready for exploitation

MSU satellite orbits the Earth after early morning launch

NASA Launches Multi-Talented Earth-Observing Satellite

The Arianespace launcher family comes together in French Guiana

CHIP TECH
Russia to launch four Glonass satellites in November

One Soyuz launcher, two Galileo satellites, three successes for Europe

Soyuz places Galileo satellites in orbit - mission control

GPS shoes for Alzheimer's patients to hit US

CHIP TECH
Asia airline body raps EU plan for carbon tax

OGC Team Produces Winning Single European Sky Aviation Proposal

China Southern Airlines grounds Airbus A380

Japan's ANA net profit up 72.1% in first half

CHIP TECH
Zinc oxide microwires improve the performance of light-emitting diodes

A SHARP New Microscope for the Next Generation of Microchips

Quantum computer components coalesce to converse

Single photons for optical information transfer

CHIP TECH
Small but agile Proba-1 reaches 10 years in orbit

Ball Aerospace-Built NPP Satellite Launched Successfully

Lockheed Martin Begins GeoEye-2 Satellite Integration

Better use of Global Geospatial Information for Solving Development Challenges

CHIP TECH
Beijing vows better pollution data after smog anger

Myanmar seeks outside help to build 'green economy'

UK environmental consulting market falls in 2010; prospects flat for 2011

EU to extend coastal pollution fines to 200 nautical miles


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement