Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Writing graphics software gets much easier
by Staff Writers
Boston MD (SPX) Aug 07, 2012


File image.

Image-processing software is a hot commodity: Just look at Instagram, a company built around image processing that Facebook is trying to buy for a billion dollars. Image processing is also going mobile, as more and more people are sending cellphone photos directly to the Web, without transferring them to a computer first.

At the same time, digital-photo files are getting so big that, without a lot of clever software engineering, processing them would take a painfully long time on a desktop computer, let alone a cellphone.

Unfortunately, the tricks that engineers use to speed up their image-processing algorithms make their code almost unreadable, and rarely reusable.

Adding a new function to an image-processing program, or modifying it to run on a different device, often requires rethinking and revising it from top to bottom.

Researchers at MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) aim to change that, with a new programming language called Halide.

Not only are Halide programs easier to read, write and revise than image-processing programs written in a conventional language, but because Halide automates code-optimization procedures that would ordinarily take hours to perform by hand, they're also significantly faster.

In tests, the MIT researchers used Halide to rewrite several common image-processing algorithms whose performance had already been optimized by seasoned programmers.

The Halide versions were typically about one-third as long but offered significant performance gains - two-, three-, or even six-fold speedups. In one instance, the Halide program was actually longer than the original - but the speedup was 70-fold.

Jonathan Ragan-Kelley, a graduate student in the Department of Electrical Engineering and Computer Science (EECS), and Andrew Adams, a CSAIL postdoc, led the development of Halide, and they've released the code online. At this month's Siggraph, the premier graphics conference, they'll present a paper on Halide, which they co-wrote with MIT computer science professors Saman Amarasinghe and Fredo Durand and with colleagues at Adobe and Stanford University.

Parallel pipelines
One reason that image processing is so computationally intensive is that it generally requires a succession of discrete operations. After light strikes the sensor in a cellphone camera, the phone combs through the image data for values that indicate malfunctioning sensor pixels and corrects them.

Then it correlates the readings from pixels sensitive to different colors to deduce the actual colors of image regions. Then it does some color correction, and then some contrast adjustment, to make the image colors better correspond to what the human eye sees. At this point, the phone has done so much processing that it takes another pass through the data to clean it up.

And that's just to display the image on the phone screen. Software that does anything more complicated, like removing red eye, or softening shadows, or boosting color saturation - or making the image look like an old Polaroid photo - introduces still more layers of processing. Moreover, high-level modifications often require the software to go back and recompute prior stages in the pipeline.

In today's multicore chips, distributing different segments of the image to cores working in parallel can make image processing more efficient.

But the way parallel processing is usually done, after each step in the image-processing pipeline, the cores would send the results of their computations back to main memory. Because data transfer is much slower than computation, this can eat up all the performance gains offered by parallelization.

So software engineers try to keep the individual cores busy for as long as possible before they have to ship their results to memory.

That means that the cores have to execute several steps in the processing pipeline on their separate chunks of data without aggregating their results. Keeping track of all the dependencies between pixels being processed on separate cores is what makes the code for efficient image processors so complicated.

Moreover, the trade-offs between the number of cores, the processing power of the cores, the amount of local memory available to each core, and the time it takes to move data off-core varies from machine to machine, so a program optimized for one device may offer no speed advantages on a different one.

Divide and conquer
Halide doesn't spare the programmer from thinking about how to parallelize efficiently on particular machines, but it splits that problem off from the description of the image-processing algorithms. A Halide program has two sections: one for the algorithms, and one for the processing "schedule."

The schedule can specify the size and shape of the image chunks that each core needs to process at each step in the pipeline, and it can specify data dependencies - for instance, that steps being executed on particular cores will need access to the results of previous steps on different cores. Once the schedule is drawn up, however, Halide handles all the accounting automatically.

A programmer who wants to export a program to a different machine just changes the schedule, not the algorithm description.

A programmer who wants to add a new processing step to the pipeline just plugs in a description of the new procedure, without having to modify the existing ones. (A new step in the pipeline will require a corresponding specification in the schedule, however.)

"When you have the idea that you might want to parallelize something a certain way or use stages a certain way, when writing that manually, it's really hard to express that idea correctly," Ragan-Kelley says.

"If you have a new optimization idea that you want to apply, chances are you're going to spend three days debugging it because you've broken it in the process. With this, you change one line that expresses that idea, and it synthesizes the correct thing."

Although Halide programs are simpler to write and to read than ordinary image-processing programs, because the scheduling is handled automatically, they still frequently offer performance gains over even the most carefully hand-engineered code.

Moreover, Halide code is so easy to modify that programmers could simply experiment with half-baked ideas to see if they improve performance.

"You can just flail around and try different things at random, and you'll often find something really good," Adams says. "Only much later, when you've thought about it very hard, will you figure out why it's good."

.


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
You and your smartphone bill
Washington DC (UPI) Aug 04, 2012
The average cellphone these days is a device for texting, tweeting, browsing the Internet and - just occasionally - making a phone call, a considerable change from the early days of the devices that's reflected in the way cellphone carriers are making their money. In the beginning, cellphones were about being, well, telephones. People made calls, day in and day out, and they were bill ... read more


TECH SPACE
Samsung exec 'very offended' by Apple rip-off claim

Wrinkled surfaces could have widespread applications

Writing graphics software gets much easier

Christine Arlt goes from dwarf research to Institute management

TECH SPACE
NATO Special Forces Taps Mutualink for Global Cross Coalition Communications

Northrop Grumman Demonstrates Integrated Receiver Circuit Under DARPA Program

Boeing Receives 10th WGS Satellite Order from USAF

Lockheed Martin-built Military Communications Satellite Marks 20 Years in Service

TECH SPACE
Ariane 5 performs 50th successful launch in a row

Boeing Delivers 2nd Intelsat 702MP Satellite to Sea Launch Home Port

The Indian GSAT-10 satellite is prepared for Arianespace's fifth Ariane 5 flight of 2012

Arianespace: 50 successful Ariane 5 launches in a row!

TECH SPACE
Raytheon completes GPS OCX iteration 1.4 Critical Design Review

Mission accomplished, GIOVE-B heads into deserved retirement

Boeing Ships 3rd GPS IIF Satellite to Cape Canaveral for Launch

GPS Can Now Measure Ice Melt, Change In Greenland Over Months Rather Than Years

TECH SPACE
Activist arrested trying to block plane at Paris airport

Volcano ash disrupts New Zealand flights

Cathay Pacific posts first-half net loss of HK$935 mn

Hong Kong Airlines plays down growth ban

TECH SPACE
Dutch firm ASML clinches 1.1 bn euro deal with Taiwan's TSMC

How to avoid traps in plastic electronics

HP claims win in legal battle with Oracle

Japan's Toshiba falls into quarterly net loss

TECH SPACE
Test flight over Peru ruins could revolutionize archaeological mapping

Interview With Scott Braun About NASA's Upcoming Hurricane Campaign

France orders Google to hand over Street View data

Space Technologies Tackle Human and Environmental Security Problems

TECH SPACE
Worldwide increase of air pollution

Philippine gold mine suspended over spill

Top researcher snubs French honour over 'industrial crimes'

1 in 5 streams damaged by mine pollution in southern West Virginia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement