Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Uncertainty gives scientists new confidence in search for novel materials
by Staff Writers
Menlo Park CA (SPX) Jul 14, 2014


This image shows the results of calculations aimed at determining which of six chemical elements would make the best catalyst for promoting an ammonia synthesis reaction. Researchers at SLAC and Stanford used Density Functional Theory (DFT) to calculate the strength of the bond between nitrogen atoms and the surfaces of the catalysts. The bond strength, plotted on the horizontal axis, is a key factor in determining the reaction speed, plotted on the vertical axis. Based on thousands of these calculations, which yielded a range of results (colored dots) that reveal the uncertainty involved, researchers estimated an 80 percent chance that ruthenium (Ru, in red) will be a better catalyst than iron (Fe, in orange.) Image courtesy Andrew Medford and Aleksandra Vojvodic/SUNCAT, Callie Cullum.

Scientists at Stanford University and the Department of Energy's SLAC National Accelerator Laboratory have found a way to estimate uncertainties in computer calculations that are widely used to speed the search for new materials for industry, electronics, energy, drug design and a host of other applications. The technique, reported in the July 11 issue of Science, should quickly be adopted in studies that produce some 30,000 scientific papers per year.

"Over the past 10 years our ability to calculate the properties of materials and chemicals, such as reactivity and mechanical strength, has increased enormously. It's totally exploded," said Jens Norskov, a professor at SLAC and Stanford and director of the SUNCAT Center for Interface Science and Catalysis, who led the research.

"As more and more researchers use computer simulations to predict which materials have the interesting properties we're looking for - part of a process called 'materials by design' -- knowing the probability for error in these calculations is essential," he said. "It tells us exactly how much confidence we can put in our results."

Norskov and his colleagues have been at the forefront of developing this approach, using it to find better and cheaper catalysts to speed ammonia synthesis and generate hydrogen gas for fuel, among other things. But the technique they describe in the paper can be broadly applied to all kinds of scientific studies.

Speeding the Material Design Cycle
The set of calculations involved in this study is known as DFT, for Density Functional Theory. It predicts bond energies between atoms based on the principles of quantum mechanics. DFT calculations allow scientists to predict hundreds of chemical and materials properties, from the electronic structures of compounds to density, hardness, optical properties and reactivity.

Because researchers use approximations to simplify the calculations - otherwise they'd take too much computer time - each of these calculated material properties could be off by a fairly wide margin.

To estimate the size of those errors, the team applied a statistical method: They calculated each property thousands of times, each time tweaking one of the variables to produce slightly different results. That variation in results represents the possible range of error.

"Even with the estimated uncertainties included, when we compared the calculated properties of different materials we were able to see clear trends," said Andrew J. Medford, a graduate student with SUNCAT and first author of the study. "We could predict, for instance, that ruthenium would be a better catalyst for synthesizing ammonia than cobalt or nickel, and say what the likelihood is of our prediction being right."

An Essential New Tool for Thousands of Studies
DFT calculations are used in the materials genome initiative to search through millions of solids and compounds, and also widely used in drug design, said Kieron Burke, a professor of chemistry and physics at the University of California-Irvine who was not involved in the study.

"There were roughly 30,000 papers published last year using DFT," he said. "I believe the technique they've developed will become absolutely necessary for these kinds of calculations in all fields in a very short period of time."

Thomas Bligaard, a senior staff scientist in charge of theoretical method development at SUNCAT, said the team has a lot of work ahead in implementing these ideas, especially in calculations attempting to make predictions of new phenomena or new functional materials.

.


Related Links
DOE/SLAC National Accelerator Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
A million times better
Munich, Germany (SPX) Jul 05, 2014
Nonlinear optical materials are widely used in laser systems. However, high light intensity and long propagation are required to produce strong nonlinear optical effects. Researchers at The University of Texas at Austin and the Technische Universitaet Muenchen created metamaterials with a million times stronger nonlinear optical response, compared to the traditional nonlinear materials, and demo ... read more


TECH SPACE
Speeding up data storage by a thousand times with 'spin current'

A million times better

With 'ribbons' of graphene, width matters

Interlayer distance in graphite oxide gradually changes when water is added

TECH SPACE
Thales enhancing communications of EU peacekeepers

Exelis enhancing communications for NATO country

Chemring integrates new system with Resolve

Northrop Grumman Receives Funding for Electronic Warfare Systems for US Army and Navy

TECH SPACE
Eco-Friendly 'Angara' Rocket Installed On Plesetsk Launch Pad

Final ATV loaded with cargo after integration on Ariane 5

Singapore launches its first nano-satellite

NASA's sounding rocket crashes into Atlantic

TECH SPACE
US Refusal to Host Russian Navigation Stations Political

China's domestic navigation system accesses ASEAN market

Soyuz Rocket puts Russian GLONASS-M navigation satellite into orbit

Russia may join forces with China to compete with US, European satnavs

TECH SPACE
China's own dreamliner prepares for takeoff

US F-35's debut at British air show in doubt

Hague pushes Eurofighter on India visit

Northrop Grumman received new order for E-2D aircraft

TECH SPACE
Move Over, Silicon, There's a New Circuit in Town

Swell new sensors

Ultra-thin wires for quantum computing

Quantum computation: Fragile yet error-free

TECH SPACE
Taking NASA-USGS's Landsat 8 to the Beach

Tips from space give long-range warning of flood risk

ENSO and the Indian Monsoon...not as straightforward as you'd think

Norway Gets TerraSAR-X Direct Receiving Station

TECH SPACE
IBM to work to curb China pollution

China sets up specialised pollution tribunal

Separating finely mixed oil and water

All the world's oceans have plastic debris on their surface




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.