Scots Engineers Prove Space Pioneer's 25-Year-Old Theory
Glasgow, UK (SPX) Jul 27, 2010 When American space pioneer, Dr Robert L Forward, proposed in 1984 a way of greatly improving satellite telecommunications using a new family of orbits, some claimed it was impossible. But now engineers at the University of Strathclyde's Advanced Space Concepts Laboratory have proved that Forward was right. The late Dr Forward - a renowned physicist who worked in the United States and from his second home in Scotland - believed it was possible to use 'displaced orbits' to deploy more satellites to the north or south of the Earth's equator, helping to meet the growing demand for communications. He proposed that the orbit of a geostationary satellite could be pushed above - or below - the usual geostationary ring around the Earth, which follows the line of the equator, by using a large solar sail propelled by the pressure of sunlight. However, critics later claimed that such 'displaced orbits' were impossible due to the unusual dynamics of the problem. Now graduate student Shahid Baig and Professor Colin McInnes, Director of the Advanced Space Concepts Laboratory, have shown that Forward was in fact correct, in a new paper published in the Journal of Guidance, Control and Dynamics. Professor McInnes said:"Satellites generally follow Keplerian Orbits, named after Johannes Kepler - the scientist who helped us understand orbital motion 400 years ago. Once it's launched, an unpowered satellite will 'glide' along a natural Keplerian orbit. "However, we have devised families of closed, non-Keplerian orbits, which do not obey the usual laws of orbital motion. Families of these orbits circle the Earth every 24 hours, but are displaced north or south of the Earth's equator. The pressure from sunlight reflecting off a solar sail can push the satellite above or below geostationary orbit, while also displacing the centre of the orbit behind the Earth slightly, away from the Sun." Although the displacement distance above or below the equator is small - of the order of 10 to 50 km - work on hybrid solar sails, which use both light pressure and thrust from a conventional electric propulsion system, is underway and aims to improve the displacement distance. Professor McInnes added: "Other work is investigating 'polar stationary orbits', termed 'pole-sitters' by Forward, which use continuous low thrust to allow a spacecraft to remain on the Earth's polar axis, high above the Arctic or Antarctic. These orbits could be used to provide new vantage points to view the Earth's polar regions for climate monitoring."
Share This Article With Planet Earth
Related Links University of Strathclyde Space Technology News - Applications and Research
Boeing Completes Critical Design Review Of Intelsat 22 Spacecraft El Segundo CA (SPX) Jul 27, 2010 Boeing has announced that it met or exceeded all the requirements of the Critical Design Review (CDR) of the Ultra High Frequency (UHF) hosted payload and its host spacecraft, the Intelsat 22 satellite (IS-22). Boeing is building IS-22 for Intelsat, the leading provider of fixed satellite services worldwide. The UHF payload, built by Boeing, is being placed on the satellite by Intelsat to ... read more |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |