. Space Industry and Business News .




.
CHIP TECH
Scientists play ping-pong with single electrons
by Staff Writers
Cambridge UK (SPX) Sep 23, 2011

Illustration of the potential-energy landscape seen by an electron, and the potential wave produced by a sound pulse (surface acoustic wave, SAW) coming from bottom right and moving past the first dot, along the channel towards the other dot.

Scientists at Cambridge University have shown an amazing degree of control over the most fundamental aspect of an electronic circuit, how electrons move from one place to another.

Researchers from the University's Cavendish Laboratory have moved an individual electron along a wire, batting it back and forth over sixty times, rather like the ball in a game of ping-pong.

The research findings, published in the journal Nature, may have applications in quantum computing, transferring a quantum 'bit' between processor and memory, for example.

Imagine you are at a party and you want to get to the other side of a crowded room to talk to someone. As you walk you have to weave around people who are walking, dancing or just standing in the way.

You may also have to stop and greet friends along the way and by the time you reach the person you wanted to talk to you have forgotten what you were going to say. Wouldn't it be nice to be lifted up above the crowd, and pushed directly to your destination?

In a similar way, electrons carrying a current along a wire do not go directly from one end to the other but instead follow a complicated zigzag path. This is a problem if the electron is carrying information, as it tends to 'forget' it, or, more scientifically, the quantum state loses coherence.

In this work, a single electron can be trapped in a small well (called a quantum dot), just inside the surface of a piece of Gallium Arsenide (GaAs). A channel leads to another, empty, dot 4 microns (millionths of a metre) away. The channel is higher in energy than the surrounding electrons.

A very short burst of sound (just a few billionths of a second long) is then sent along the surface, past the dot. The accompanying wave of electrical potential picks up the electron, which then surfs along the channel to the other dot, where it is captured.

A burst of sound sent from the other direction returns the electron to the starting dot where the process can be repeated. The electron goes back and forth like a ping-pong ball. Rallies of up to 60 shots have been achieved before anything goes wrong.

"The movement of electrons by our 'surface acoustic wave' can also be likened to peristalsis in the oesophagus, where food is propelled from the mouth to the stomach by a wave of muscle contraction," explains Rob McNeil, the PhD student who did most of the work, helped by postdoc Masaya Kataoka, both at the University of Cambridge's Department of Physics, the Cavendish Laboratory.

"This is an enabling technology for quantum computers," Chris Ford, team leader of the research from the Semiconductor Physics Group in the Cavendish, says.

"There is a lot of work going on worldwide to make this new type of computer, which may solve certain complex problems much faster than classical computers. However, little effort has yet been put into connecting up different components, such as processor and memory.

Although our experiments do not yet show that electrons 'remember' their quantum state, this is likely to be the case. This would make the method of transfer a candidate for moving quantum bits of information (qubits) around a quantum circuit, in a quantum computer.

Indeed, our theorist, Crispin Barnes, proposed using this mechanism to make a whole quantum computer a long time ago, and this is an important step towards that goal."

Notes to Editors:

1. Paper to appear in Nature September 22nd 2011; doi: 10.1038/nature10444

2. Web page: http://www.sp.phy.cam.ac.uk/SPWeb/research/QD2QD.html

3. Images and video (may be used for publication)

Illustration of the potential-energy landscape seen by an electron, and the potential wave produced by a sound pulse (surface acoustic wave, SAW) coming from bottom right and moving past the first dot, along the channel towards the other dot. [Link to same high-resolution image without labels:

http://www.sp.phy.cam.ac.uk/SPWeb/research/pics/QD2QDSAWPulse.png

Fig. 2 Still from an animated illustration in cross section of a sound wave capturing an electron from a well (dot) and transferring it to a second dot. Animation available at

http://www.sp.phy.cam.ac.uk/SPWeb/research/pics/SAWTransfer_between_dots.mp4 or http://www.youtube.com/watch?v=9Pi-FN2zmM0 .

Still available at: http://www.sp.phy.cam.ac.uk/SPWeb/research/pics/QD2QDSAWPulseAnimationStill.png .

Related Links
University of Cambridge
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




 

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Samsung starts new chip line to boost flash memory
Seoul (AFP) Sept 22, 2011
Samsung Electronics, the world's largest memory chip maker, said Thursday it has begun mass production at a new line to raise production of flash memory chips used in tablets and smartphones. The South Korean firm also announced it has started mass production of advanced DRAM (dynamic random access memory) chips, which use 20-nanometer process technology. It said in a statement these of ... read more


CHIP TECH
NASA says satellite will hit Earth Sept 23 US time

Ariane 5 launches SES-2 satellite with chirp hosted payload on board

PlusComms to Create a Global Space Network

NASA to Demonstrate Communications Via Laser Beam

CHIP TECH
Russia launches military satellite after delay

Raytheon Fields First AEHF Satellite Communications Terminals to Tactical Units

Harris unveils new systems

Boeing Receives Additional Wideband Global SATCOM Orders

CHIP TECH
Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

Ariane rocket launches satellites after strike delay

Double prime for Astrium on next Ariane launch

CHIP TECH
Anger as GPS drives tourists to Hollywood icon

Swedish daycare to test GPS for tracking kids

Honeywell Unveils New Version of ViewPoint

Russia set to launch Glonass-M satellite on Oct. 1

CHIP TECH
Painting The Skies Green Over Santa Rosa

Airbus aims to dominate China market

IATA ups 2011 airlines profit outlook, 2012 weak

Asia short on pilots: Boeing

CHIP TECH
Scientists play ping-pong with single electrons

Samsung starts new chip line to boost flash memory

RIM shares fall on disappointing results

RIM shares fall on disappointing results

CHIP TECH
Russia may launch its first Earth remote sensing satellite in 2012

Astrotech Subsidiary Wins Contract for NASA Mission

Japanese meteorological firm to launch satellite to track Arctic sea ice

ERS satellite missions complete after 20 years

CHIP TECH
Nitrate levels rising in northwestern Pacific

China shuts lead plants on pollution fears

Mathematician fights Bucharest's 'cultural parricide'

Humanity falls deeper into ecological debt: study


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement