Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Researchers strain to improve electrical material and it's worth it
by Liz Ahlberg for University of Illinois News
Champaign IL (SPX) Feb 15, 2013


University of Illinois engineers devised a method of making thin films of ferroelectric material with twice the strain of traditional methods, giving the films exceptional electric properties. Professor Lane Martin, right, led the work with graduate student Karthik Jambunathan, center, and postdoctoral researcher Vengadesh Mangalam. Photo by L. Brian Stauffer.

Like turning coal to diamond, adding pressure to an electrical material enhances its properties. Now, University of Illinois at Urbana-Champaign researchers have devised a method of making ferroelectric thin films with twice the strain, resulting in exceptional performance.

Led by Lane Martin, a professor of materials science and engineering, the group published its results in the journal Advanced Materials.

Ferroelectric materials, metal oxides with special polarization properties, are used in a number of advanced electronics applications. When electricity is applied, they can switch their polarization, or the direction of their internal electric field, which makes them useful in devices such as computer memories and actuators. Ferroelectric materials are especially useful in aerospace applications because they are less susceptible to radiation than traditional semiconductors.

Strain in these materials can alter their properties and improve their performance. A lot of research in ferroelectric materials has focused on making strained thin films with alternating layers only a few nanometers thick of materials with slightly different crystal structures.

"It turns out that if you put pressure on certain types of materials, the properties completely change," Martin said. "In our case we administer pressure by straining or stretching thin versions of these materials like one would stretch plastic wrap to fit on a bowl. You can induce things that don't exist at ambient conditions; you can make phases and properties that don't exist."

The films are made of lead zirconate titanate (commonly called PZT). The relative amounts of zirconium (Zr) and titanium (Ti) in the films determine the shape of the crystals. Traditionally, films of PZT have been made up of a single composition, grown on a substrate with a slightly different crystal structure to cause strain in the PZT. However, too much strain causes the PZT to revert to its original crystal structure. This limits researchers' ability to change the properties of these materials for better device performance.

The Illinois researchers overcame this limitation by gradually shifting the concentrations of Zr and Ti as they grew the thin films, incrementally changing the crystal structure. From layer to layer, the structures are very similar, yet the composition of the PZT at the top and bottom of the film is very different, transitioning from a PZT composition with 80 percent Zr to 80 percent Ti. This gradual change, instead of the usual layered approach, results in little localized strain but large overall strain.

"We have taken a material with similar mechanical properties to a dinner plate, the same kind of hardness, and effectively figured out a way to stretch that plate without breaking it," Martin said. "With our method, we've been able to extend our ability to strain these materials. We go to the nanoscale so we can pull on these films and dramatically change the shape, and that affects the properties."

Thanks to the large strain, the compositionally graded PZT films not only have improved properties, but also entirely new properties. Most notably, the films have a built-in electric field, called an intrinsic potential. This means that it can perform some functions without needing an external current or field applied to it. In addition, it means that the material has a preferred polarity, which opens the door for new applications.

"This sort of built-in field is very useful," said Karthik Jambunathan, a graduate student and co-author of the paper. "Otherwise you have to engineer similar effects using features not native to the materials to have the same thing happen, but it is much more difficult and less easily controlled. Here, it's grown into the material to begin with."

For example, ferroelectric materials widely have been used in memory applications that rely on spontaneous polarization. However, to read a bit of data in computer memories made with a traditional ferroelectric material, its polarity is switched. This means that every time the bit is read, it has to be re-written and compared to a reference bit. But if the material had a built-in electric potential, engineers could make bits that would not need to have their polarity switched to be read, so computer components made with the new material could be smaller, faster and longer lasting.

Now the Illinois team plans to further explore potential applications, as well as apply their gradient film technique to other types of ferroelectric materials in search of even more novel and unexpected properties.

"This is just the beginning," Martin said. "There are an infinite number of varieties of gradients that you could think about. This is a smooth gradient, but we could skew it, or change what the end members are. Each one of these is going to give its own set of structures and potential properties that we haven't even begun to scratch the surface of. I think the capacity for finding new types of materials and properties is really open here."

The Defense Advanced Research Projects Agency, the Office of Naval Research, the Army Research Office and the Air Force Office of Scientific Research supported this work. Martin also is affiliated with the Frederick Seitz Materials Research Laboratory at the U. of I.

.


Related Links
Materials Science And Engineering at University of Illinois
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
ORNL scientists solve mercury mystery
Oak Ridge TN (SPX) Feb 13, 2013
By identifying two genes required for transforming inorganic into organic mercury, which is far more toxic, scientists have taken a significant step toward protecting human health. The question of how methylmercury, an organic form of mercury, is produced by natural processes in the environment has stumped scientists for decades, but a team led by researchers at Oak Ridge National Laborato ... read more


TECH SPACE
Researchers strain to improve electrical material and it's worth it

Explosive breakthrough in research on molecular recognition

Indra Develops The First High-Resolution Passive Radar System

ORNL scientists solve mercury mystery

TECH SPACE
Astrium tapped for communications network

XTAR To Expand Beyond NATO As African And Asian Hot Spots Flare

How the DoD Can More Efficiently Acquire Satellite Systems and Capacity

TACLANE-1G Encryptor Certified by NSA

TECH SPACE
Another Sea Launch Failure

ILS Concludes Yamal 402 Proton Launch Investigation

Ariane 5 delivers record payload off back-to-back launches this week

Eutelsat and Arianespace sign new multi-year multiple launch services agreement

TECH SPACE
Boeing Awarded USAF Contract to Continue GPS Modernization

A system that improves the precision of GPS in cities by 90 percent

System improves GPS in city locations

Boeing to modernize U.S. Air Force GPS net

TECH SPACE
Boeing and Elbit Systems to Collaborate on Aircraft Defense Solutions

F-35A Completes 3-Year Clean Wing Flutter Testing Program

E-2D Advanced Hawkeye Approved For Full-Rate Production

Major fighter jet deal, trade dominate Hollande's India trip

TECH SPACE
Building a biochemistry lab on a chip

Cell circuits remember their history

New materials may be computer breakthrough

Researchers create 'building block' of quanutm networks

TECH SPACE
USGS Ready To Start Landsat 8 Science Program

Orbital-Built Landsat Satellite Launched

LDCM 'Doing Great' in Orbit

US launches Earth observation satellite

TECH SPACE
Bisphenol A may not be negatively affecting humans: studies

Anxiety drug pollution makes fish go rogue: study

Philippine development sparks 'sunset' protest

Waste Dump at the End of the World




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement