Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Researchers Develop Harder Ceramic for Armor Windows
by Staff Writers
Washington DC (SPX) May 01, 2014


Spinel windows can have applications as electro-optical/infrared deckhouse windows in the new class of U.S. Navy destroyers, like the USS Elmo Zumwalt pictured above, that feature a low radar signature compared with current vessels. U.S. Navy photo courtesy of General Dynamics.

The Department of Defense needs materials for armor windows that provide essential protection for both personnel and equipment while still having a high degree of transparency. To meet that need, scientists at the U.S. Naval Research Laboratory (NRL) have developed a method to fabricate nanocrystalline spinel that is 50% harder than the current spinel armor materials used in military vehicles.

With the highest reported hardness for spinel, NRL's nanocrystalline spinel demonstrates that the hardness of transparent ceramics can be increased simply by reducing the grain size to 28 nanometers. T

his harder spinel offers the potential for better armor windows in military vehicles, which would give personnel and equipment, such as sensors, improved protection, along with other benefits. This research was reported in the January 30, 2014, issue of the journal Acta Materialia.

To create the harder spinel, the NRL research team sinters, or consolidates, commercial nanopowders into fully dense nanocrystalline materials. Sintering is a common method used to create large ceramic and metal components from powders. However, the NRL team is the first to succeed in making this harder spinel through their development of the Enhanced High Pressure Sintering (EHPS) approach, explains Dr. James Wollmershauser, a lead investigator in the research.

The EHPS approach uses high pressures (up to 6 GPa) to retard bulk diffusion rates, break powder agglomerates, and reposition nanoparticles very close to each other to help eliminate porosity in the sintered ceramic. NRL researchers then can exploit the increased surface potential of nanoparticles for surface-energy-driven densification without coarsening.

Using this EHPS approach to create the nanocrystalline spinel, the NRL research team did not observe any decline in density or fracture resistance due to residual porosity. Other researchers have tried to make nanocrystalline spinel, but they have all had problems with the final product, such as, a reduced density, reduced fracture resistance, or reduced transparency.

The reduced density in other researchers work is caused by voids that cannot be removed during processing, which can reduce hardness, fracture resistance and transparency. NRL's Wollmershauser notes that some theories suggest that fracture resistance should decrease when you make a ceramic material nanocrystalline.

However, in their work, the NRL researchers have shown that the fracture resistance does not change suggesting that nanocrystalline ceramics can have an equivalent toughness to microcrystalline ceramics, which is important for high window lifetimes.

The Hall-Petch relationship has been used to describe the phenomenon where a material's strength and hardness can be increased by decreasing the average crystallite grain size. However, prior experimental work had shown a breakdown in this relationship (where hardness starts reducing with decreasing grain size) for certain ceramics at ~130 nanometers.

Remarkably, the NRL researchers have disproved that a breakdown in the Hall-Perch effect exists at these nanoscale grain sizes by measuring an increasing hardness down to at least a 28 nanometer crystallite grain size. The new, high hardness values were measured on samples with these extremely small average grain sizes.

In current applications, spinel and sapphire (which is also very hard), are used to create materials for military armor windows. A drawback with sapphire is that it is expensive to make into windows. By increasing the hardness of spinel even further, NRL researchers can make a material harder than sapphire and possibly replace sapphire windows with windows made out of nanocrystalline spinel. Also, harder nanocrystalline spinel windows can be made thinner and still meet the current military specifications.

This thinness translates to weight savings on the vehicle. So the NRL-developed nanocrystalline spinel brings improvements in hardness, window thickness and weight, and cost.

A final benefit is that the NRL-developed nanocrystalline spinel is highly transparent, making it useful in UV, visible and infrared optics. The armor material used by the military needs to be transparent so that both equipment and personnel can see. Different sensors "see" different wavelengths of light. Infrared is important for heat-seeking capabilities.

UV imaging can be used to detect threats not seen in the visible spectrum. UV detectors also have applications in space-borne astronomy missions. A single window that could be produced using the NRL-developed nanocrystalline spinel would be transparent across many technologically important wavelengths, easing design and weight requirements.

Beyond the use for a harder spinel in armor windows, there could be other potential DoD and civilian applications in better/stronger office windows, smartphones and tablets screens, military/civilian vehicles, space vehicles, and even extraterrestrial rovers.

This research is a cross-disciplinary effort at Naval Research Laboratory. The NRL team includes Dr. James Wollmershauser, Dr. Edward Gorzkowski, Dr. Ramasis Goswami, Dr. Syed Qadri, Dr. M. Ashraf Imam, and Dr. Richard Everett, from NRL's Materials Science and Technology Division; along with Dr. Boris Feygelson, Dr. Chase Ellis, Dr. Joseph Tischler, and Dr. Fritz Kub from NRL's Electronics Science and Technology Division; and Dr. Jas Sanghera, Dr. Guillermo Villalobos, and Dr. Shyam Bayya from NRL's Optical Sciences Division.

.


Related Links
U.S. Naval Research Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
A Glassy Look for Manganites
Berkeley CA (SPX) Apr 30, 2014
Manganites - compounds of manganese oxides - show great promise as "go-to" materials for future electronic devices because of their ability to instantly switch from an electrical insulator to a conductor under a wide variety of external stimuli, including magnetic fields, photo-excitations and vibrational excitations. This ultrafast switching arises from the many different ways in which th ... read more


TECH SPACE
Fluorescent hybrid material changes colour according to the direction of the light

Lockheed assembles satellite propulsion module

Flexible pressure-sensor film shows how much force a surface 'feels' -- in color

TV terrifies and compels with viruses and robots

TECH SPACE
Britain contracts General Dynamics UK to support Bowman radios

Testing facility paves way for more radio connections to MUOS satellites

LGS Innovations completes upgrade of Army communications center in Kuwait

DISA Awards Northrop Grumman contract for Joint Command and Control System

TECH SPACE
Replacing Russian-made rocket engines is not easy

Parallel Ariane 5 and Soyuz mission campaigns keep Arianespace on track

SHERPA launch service deal to deploy 1200 kilo smallsat payloads

ILS Satellite Launches Remain on Schedule Despite Sanctions

TECH SPACE
Latest Galileo satellite arrives at ESA's test centre

Glonass Failure Caused by Faulty Software

Homegrown high-precision positioning system put to use

Russia eyes building Glonass stations in 36 countries

TECH SPACE
Production Configuration AH-6i Light Helicopter for the First Time

U-2 spy plane linked to US air traffic meltdown

NGC Delivers Mode S Upgrade for the UK's Sentry AWACS System

Sikorsky officially unveils CH-53K

TECH SPACE
New lab-on-a-chip device overcomes miniaturization problems

Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

US chip giant Intel to pump $6 bn into Israel: minister

Progress made in developing nanoscale electronics

TECH SPACE
Kazakhstan's First Earth Observation Satellite to Orbit

How Does Your Garden Glow? NASA's OCO-2 Seeks Answer

NASA-CNES Proceed on Surface Water and Ocean Mission

Seeing the bedrock through the trees

TECH SPACE
UNESCO condemns dredge waste dumping in Barrier Reef waters

US top court upholds cross-state air pollution rule

China toughens environment law to target polluters

The result of slow degradation




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.