. Space Industry and Business News .




.
CHIP TECH
Quantum computer built inside a diamond
by Staff Writers
Los Angeles CA (SPX) Apr 09, 2012

Illustration only.

Diamonds are forever - or, at least, the effects of this diamond on quantum computing may be. A team that includes scientists from USC has built a quantum computer in a diamond, the first of its kind to include protection against "decoherence" - noise that prevents the computer from functioning properly.

The demonstration shows the viability of solid-state quantum computers, which - unlike earlier gas- and liquid-state systems - may represent the future of quantum computing because they can be easily scaled up in size. Current quantum computers are typically very small and - though impressive - cannot yet compete with the speed of larger, traditional computers.

The multinational team included USC Professor Daniel Lidar and USC postdoctoral researcher Zhihui Wang, as well as researchers from the Delft University of Technology in the Netherlands, Iowa State University and the University of California, Santa Barbara.

The team's diamond quantum computer system featured two quantum bits (called "qubits"), made of subatomic particles.

As opposed to traditional computer bits, which can encode distinctly either a one or a zero, qubits can encode a one and a zero at the same time. This property, called superposition, along with the ability of quantum states to "tunnel" through energy barriers, will some day allow quantum computers to perform optimization calculations much faster than traditional computers.

Like all diamonds, the diamond used by the researchers has impurities - things other than carbon. The more impurities in a diamond, the less attractive it is as a piece of jewelry, because it makes the crystal appear cloudy.

The team, however, utilized the impurities themselves.

A rogue nitrogen nucleus became the first qubit. In a second flaw sat an electron, which became the second qubit. (Though put more accurately, the "spin" of each of these subatomic particles was used as the qubit.)

Electrons are smaller than nuclei and perform computations much more quickly, but also fall victim more quickly to "decoherence." A qubit based on a nucleus, which is large, is much more stable but slower.

"A nucleus has a long decoherence time - in the milliseconds. You can think of it as very sluggish," said Lidar, who holds a joint appointment with the USC Viterbi School of Engineering and the USC Dornsife College of Letters, Arts and Sciences.

Though solid-state computing systems have existed before, this was the first to incorporate decoherence protection - using microwave pulses to continually switch the direction of the electron spin rotation.

"It's a little like time travel," Lidar said, because switching the direction of rotation time-reverses the inconsistencies in motion as the qubits move back to their original position.

The team was able to demonstrate that their diamond-encased system does indeed operate in a quantum fashion by seeing how closely it matched "Grover's algorithm."

The algorithm is not new - Lov Grover of Bell Labs invented it in 1996 - but it shows the promise of quantum computing.

The test is a search of an unsorted database, akin to being told to search for a name in a phone book when you've only been given the phone number.

Sometimes you'd miraculously find it on the first try, other times you might have to search through the entire book to find it. If you did the search countless times, on average, you'd find the name you were looking for after searching through half of the phone book.

Mathematically, this can be expressed by saying you'd find the correct choice in X/2 tries - if X is the number of total choices you have to search through. So, with four choices total, you'll find the correct one after two tries on average.

A quantum computer, using the properties of superposition, can find the correct choice much more quickly. The mathematics behind it are complicated, but in practical terms, a quantum computer searching through an unsorted list of four choices will find the correct choice on the first try, every time.

Though not perfect, the new computer picked the correct choice on the first try about 95 percent of the time - enough to demonstrate that it operates in a quantum fashion.

Related Links
University of Southern California
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Giant piezoelectricity from ZnO materials, comparable with perovskite, was achieved
Beijing, China (SPX) Apr 05, 2012
In recent years, with the growing concerns over environmental protection and human health, environment-friendly materials have received increasing attention, and for decades researchers have been fiercely studying lead-free piezoelectric materials with high piezoelectric properties. After more than 7-years of innovative research, Professor PAN Feng and his group from Key Laboratory of Adva ... read more


CHIP TECH
New York pay phones to get touchy feely makeover

Company touts self-healing film for screen

China sets up rare earth body to boost sector

'Mass Effect 3' fans promised expanded ending

CHIP TECH
Raytheon to Continue Supporting Coalition Forces' Information-Sharing Computer Network

Northrop Grumman Wins Contract for USAF Command and Control Modernization Program

TacSat-4 Enables Polar Region SatCom Experiment

'See Me' satellites may help ground forces

CHIP TECH
Spy satellite-carrying rocket blasts off

Orbital Receives Order for Minotaur I Space Launch Vehicle From USAF

Space Launch System Program Completes Step One of Combined Milestone Reviews

Russian Proton-M Puts Military Satellite into Orbit

CHIP TECH
Hardware 'bug' hits TomTom nav devices

How interstellar beacons could help future astronauts find their way across the universe

ISS Keeps Watch on World's Sea Traffic

Many US police use cell phones to track: study

CHIP TECH
EU plays down financial impact of carbon tax on airlines

Airborne prayers problem solved for tech-savvy Muslims

Engine failure forces Cathay jet to turn back

China Southern committed to Airbus orders: report

CHIP TECH
Quantum computer built inside a diamond

Giant piezoelectricity from ZnO materials, comparable with perovskite, was achieved

Quantum information motion control is now improved

Australian WiFi inventors win US legal battle

CHIP TECH
ONR Grant Expands Research of Typhoons, Monsoons, Internal Waves in Asia-Pacific

China makes public satellite data products

Key ice shelf in Antarctica has shrunk by 85 percent

ESA and NASA join forces to measure Arctic sea ice

CHIP TECH
Black carbon ranked number two climate pollutant by US EPA

35,000 gallons of prevention

State of the planet

Oil from Deepwater Horizon disaster entered food chain in the Gulf of Mexico


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement