. Space Industry and Business News .




.
CHIP TECH
Quantum Computing Has Applications in Magnetic Imaging
by Staff Writers
Pittsburgh, PA (SPX) Dec 20, 2011

File image.

Quantum computing-considered the powerhouse of computational tasks-may have applications in areas outside of pure electronics, according to a University of Pittsburgh researcher and his collaborators. Working at the interface of quantum measurement and nanotechnology, Gurudev Dutt, assistant professor in Pitt's Department of Physics and Astronomy in the Kenneth P. Dietrich School of Arts and Sciences, and his colleagues report their findings in a paper published online Dec. 18 in Nature Nanotechnology.

The paper documents important progress towards realizing a nanoscale magnetic imager comprising single electrons encased in a diamond crystal.

"Think of this like a typical medical procedure-a Magnetic Resonance Imaging (MRI)-but on single molecules or groups of molecules inside cells instead of the entire body. Traditional MRI techniques don't work well with such small volumes, so an instrument must be built to accommodate such high-precision work," says Dutt.

However, a significant challenge arose for researchers working on the problem of building such an instrument: How does one measure a magnetic field accurately using the resonance of the single electrons within the diamond crystal?

Resonance is defined as an object's tendency to oscillate with higher energy at a particular frequency, and occurs naturally all around us: for example, with musical instruments, children on swings, and pendulum clocks.

Dutt says that resonances are particularly powerful because they allow physicists to make sensitive measurements of quantities like force, mass, and electric and magnetic fields. "But they also restrict the maximum field that one can measure accurately."

In magnetic imaging, this means that physicists can only detect a narrow range of fields from molecules near the sensor's resonant frequency, making the imaging process more difficult.

"It can be done," says Dutt, "but it requires very sophisticated image processing and other techniques to understand what one is imaging. Essentially, one must use software to fix the limitations of hardware, and the scans take longer and are harder to interpret."

Dutt-working with postdoctoral researcher Ummal Momeen and PhD student Naufer Nusran (A and S'08 G), both in Pitt's Department of Physics and Astronomy-has used quantum computing methods to circumvent the hardware limitation to view the entire magnetic field.

By extending the field, the Pitt researchers have improved the ratio between maximum detectable field strength and field precision by a factor of 10 compared to the standard technique used previously.

This puts them one step closer toward a future nanoscale MRI instrument that could study properties of molecules, materials, and cells in a noninvasive way, displaying where atoms are located without destroying them; current methods employed for this kind of study inevitably destroy the samples.

"This would have an immediate impact on our understanding of these molecules, materials, or living cells and potentially allow us to create better technologies," says Dutt.

These are only the initial results, says Dutt, and he expects further improvements to be made with additional research: "Our work shows that quantum computing methods reach beyond pure electronic technologies and can solve problems that, earlier, seemed to be fundamental roadblocks to making progress with high-precision measurements."

Related Links
Department of Physics and Astronomy at Pittsburgh,
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
New method for enhancing thermal conductivity could cool computer chips, lasers and other devices
Nashville TN (SPX) Dec 16, 2011
The surprising discovery of a new way to tune and enhance thermal conductivity - a basic property generally considered to be fixed for a given material - gives engineers a new tool for managing thermal effects in smart phones and computers, lasers and a number of other powered devices. The finding was made by a group of engineers headed by Deyu Li, associate professor of mechanical enginee ... read more


CHIP TECH
Research could improve laser-manufacturing technique

German company finds rare earths resources in Magadascar

Apple scores hit on HTC in US patent case

Can science predict a hit song

CHIP TECH
Satellite Tracking Specialist, Track24, wins Canadian Government Contract

Airman brings space to ground forces

Astrium achieves Initial System Acceptance on Yahsat programme

Northrop Grumman Awarded Microscale Power Conversion Contract

CHIP TECH
Vega moves closer to its first liftoff

Arianespace Signs First launch contracts for Vega

Arianespace Completes 2011 Launch Manifest With Successful Soyuz Campaign

Soyuz is cleared for its second Arianespace launch from the Spaceport

CHIP TECH
Lockheed Martin Delivers GPS 3 Pathfinder Satellite to Denver on Schedule

Galileo in tune as first navigation signal transmitted to Earth

Glonass satnav system targets Latin America and India

Lightweight GPS tags help research track animals of all sizes

CHIP TECH
Qantas reaches agreement with engineers

Removing sulfur from jet fuel cools climate

EU unyielding on airline carbon rules despite US pressure

Cathay announces economy class upgrade

CHIP TECH
Quantum Computing Has Applications in Magnetic Imaging

Sharpening the lines could lead to even smaller features and faster microchips

Optical Fiber Innovation Could Make Future Optical Computers a 'SNAP'

New method for enhancing thermal conductivity could cool computer chips, lasers and other devices

CHIP TECH
SMOS detects freezing soil as winter takes grip

NASA Gears Up for Airborne Study of Earth's Radiation Balance

Study Shows More Shrubbery in a Warming World

Astrium awarded Sentinel 5 Precursor contract

CHIP TECH
Beijing hits 'blue sky' target despite bad air

Mercury releases into the atmosphere from ancient to modern times

Keeping our beaches safe

Christmas shopping hampered as Milan battles smog


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement