Space Industry and Business News  
Plastic With Changeable Conductivity Developed By Chemical Engineer

Dr. Yueh-Lin (Lynn) Loo, assistant professor of chemical engineering, bends a silicone stamp used in creating patterns for fabricating polyaniline wires. Since the journal article was submitted, Loo's laboratory has found a way to manufacture polyaniline with 10-fold greater conductivity.
by Staff Writers
Austin TX (SPX) Apr 10, 2007
Dr. Yueh-Lin (Lynn) Loo at The University of Texas at Austin has modified a plastic so its ability to carry an electrical current can be altered during manufacturing to meet the needs of future electronic devices.

Loo, an assistant professor of chemical engineering, studies the plastic called polyaniline because it could serve as flexible, inexpensive wiring in future products such as military camouflage that changes colors, foldable electronic displays and medical sensors.

By combining polyaniline with a chemical that gives it conductivity, Loo discovered she could increase the plastic's conductivity one- to six-fold based on the version of the chemical added. The results involving the chemical polymer acid were published in the April 7 issue of the Journal of Materials Chemistry.

Chemically altered polyaniline has several advantages over the more commonly used metals, like gold and copper, in devices other than computers. For example, Loo's previous research has demonstrated that "doped" polyaniline can be manufactured in solution at room temperatures and without vacuum chambers. Producing metal-based wires requires special manufacturing conditions in addition to the high cost of the metals.

Since Loo's laboratory submitted their research to the Journal of Materials Chemistry, they have developed a version of polyaniline whose conductivity is 10 times higher than before. However, that level of electrical conductivity still doesn't rival that of copper, which is used to produce high-speed interconnections.

That effort will be based on the greater understanding Loo has gained of the polyaniline/polymer acid described in the Journal of Materials Chemistry article. In the article, graduate student Joung Eun Yoo and other members of Loo's laboratory began determining how higher-mass versions of polymer acid improve the plastic's conductivity when the two materials are combined. So far, they have learned that the higher mass acids attach to the plastic in longer chains, and induce a less-ordered internal structure (crystallinity) within the plastic.

"Understanding how the structure of this polyaniline material changes when its conductivity changes will be crucial for selecting the right material for different consumer applications," Loo said.

She noted that the ability of the plastic to change colors depending on whether it was conductive or not could be especially useful.

"Its general versatility could lead to a variety of new consumer products in upcoming years," she said.

Loo has begun collaborating with Research Professor Adam Heller at the university to investigate using polyaniline as part of a sensor material in medical devices. Heller previously developed two commercially available devices to monitor glucose levels in people with diabetes.

Loo's latest published research was funded by a Young Investigator Award she received in 2005 from the Arnold and Mabel Beckman Foundation, and by a Dupont Young Professor Grant. Loo's innovative research also has led to her selection in 2004 as one of Technology Review's Top 100 Young Investigators, the same year she received a National Science Foundation CAREER Award.

Related Links
Powering The World in the 21st Century at Energy-Daily.com
Our Polluted World and Cleaning It Up
China News From SinoDaily.com
Global Trade News
The Economy
All About Solar Energy at SolarDaily.com
Civil Nuclear Energy Science, Technology and News
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Self-Healing House In Greece Will Dare To Defy Nature
Leeds UK (SPX) Apr 05, 2007
A high-tech villa designed to resist earthquakes by 'self-healing' cracks in its own walls and monitoring vibrations through an intelligent sensor network will be built on a Greek mountainside.







  • All Of Russia Will Have Internet And Phone Access
  • Wildblue High-Speed Internet Via Satellite Triples Capacity With New Satellite
  • Publish, Perish Attitudes Make Profs Balk At Online Publication
  • World Getting Ready To Change The Light Bulb

  • Arianespace To Launch Australian Satellite Optus D3
  • Arianespace To Launch Two Intelsat Payloads
  • Progress On The Sea Launch Investigation And Recovery
  • Two New Payloads For Ariane 5

  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming

  • LockMart Team Completes Design Review Phase Of Mobile User Objective System For Navy
  • Boeing Submits Bid To Design AMF JTRS Radio System
  • Raytheon to Pursue US Air Force Network and Space Operations And Maintenance Contract
  • Boeing Helps US Air Force FAB-T Program Win Key Acquisition Award

  • United Space Alliance Brings New Innovations to Future Space Operations
  • ESA And NASA Extend Ties With Major New Cross-Support Agreement
  • Cornell Wins A NASA Launch For Nano Satellite
  • Plastic With Changeable Conductivity Developed By Chemical Engineer

  • NASA Nobel Prize Recipient To Lead Chief Scientist Office
  • Kathryn Kynard Plays Key Role In Ares I Upper Stage Engine Development
  • William Shernit Joins Intelsat General As President and CEO
  • Northrop Grumman Appoints Catherine Kuenzel And Jill Kale IT Sector Vice Presidents

  • High-Resolution Images Herald New Era In Earth Sciences
  • ISRO To Focus On Societal Projects
  • USGS Defines Roles For New Satellite Mission
  • ESA Signs Arrangement With New Zealand On Tracking Station

  • Russia To Expand Glonass Satellite Group By Year End
  • Lockheed Martin Team Completes GPS 3 System Design Review On Schedule
  • Glonass System To Be Launched By Year-End
  • Haicom Is Proudly Announce The New HI-601VT GPS GSM Real-Time Tracker

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement