Space Industry and Business News
ENERGY TECH
Plasma heating efficiency in fusion devices boosted by metal screens
illustration only
Plasma heating efficiency in fusion devices boosted by metal screens
by Raphael Rosen for PPPL News
Princeton NJ (SPX) Dec 26, 2024

Heating plasma to the ultra-high temperatures needed for fusion reactions requires more than turning the dial on a thermostat. Scientists consider multiple methods, one of which involves injecting electromagnetic waves into the plasma, the same process that heats food in microwave ovens. But when they produce one type of heating wave, they can sometimes simultaneously create another type of wave that does not heat the plasma, in effect wasting energy.

In response to the problem, scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have performed computer simulations confirming a technique that prevents the production of the unhelpful waves, known as slow modes, boosting the heat put into the plasma and increasing the efficiency of the fusion reactions.

"This is the first time scientists have used 2D computer simulations to explore how to reduce slow modes," said Eun-Hwa Kim, a PPPL principal research physicist and lead author of the paper reporting the results in Physics of Plasmas. "The results could lead to more efficient plasma heating and possibly an easier path to fusion energy."

The team, which included researchers from General Atomics who use the DIII-D tokamak fusion facility, determined that positioning a metal grate known as a Faraday screen at a slight five-degree slant with respect to the antenna producing the heating waves, also known as helicon waves, stops the production of the slow modes. Researchers want to avoid creating slow modes because, unlike helicon waves, they cannot penetrate the magnetic field lines confining the plasma to heat the core, where most fusion reactions occur. In addition, the slow modes are easily damped or snuffed out by the plasma itself. Therefore, any energy used to create slow modes is energy that is not used to heat the plasma and foster fusion reactions.

The researchers simulated the production of helicon waves and slow modes using the Petra-M computer code, a powerful and versatile program used to model electromagnetic waves in fusion devices and space plasmas. The simulations replicated conditions in the DIII-D tokamak, a doughnut-shaped plasma device operated by General Atomics for the DOE. The team performed a series of virtual experiments to test which of the following had the greatest effect on the production of slow modes - the antenna's alignment, the Faraday screen's alignment or the density of small particles known as electrons in front of the antenna. The simulations confirmed suggestions made by previous researchers indicating that when the Faraday screen was aligned at an angle of five degrees or less from the orientation of the antenna, the screen, in effect, short-circuits the slow modes, making them fizzle out before they propagate into the plasma.

The suppression of slow modes depends greatly on how much the Faraday screen leans to the side. "We found that when the screen's orientation exceeds five degrees by only a little bit, the slow modes grow by a great deal," said PPPL principal research physicist Masayuki Ono, one of the paper's authors. "We were surprised by how sensitive the development of slow modes was to the screen alignment." Scientists could use this information to tweak the design of new fusion facilities to make their heating more powerful and efficient.

In the future, the scientists plan to increase their understanding of how to prevent slow modes by running computer simulations that consider more of the plasma's properties and factor in more information about the antenna.

Research Report:Full-wave simulations on helicon and parasitic excitation of slow waves near the edge plasma

Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
MIT spinout Commonwealth Fusion Systems unveils plans for the world's first fusion power plant
Boston MA (SPX) Dec 18, 2024
America is one step closer to tapping into a new and potentially limitless clean energy source today, with the announcement from MIT spinout Commonwealth Fusion Systems (CFS) that it plans to build the world's first grid-scale fusion power plant in Chesterfield County, Virginia. The announcement is the latest milestone for the company, which has made groundbreaking progress toward harnessing fusion - the reaction that powers the sun - since its founders first conceived of their approach in an MIT ... read more

ENERGY TECH
Kenya investigating fallen space debris

Intuitive Machines enhances lunar and deep space data transmission services

NASA partners with four companies to expand Near Space Network capabilities

Satellite ground stations anchor reliable data transmission across China

ENERGY TECH
Quadsat and NATO NCIA validate Quadsat system for WGS compliance testing

ESA to support development of secure EU communications satellite constellation

IRIS2 contract signed to strengthen Europe's space connectivity and security

SpaceRISE to develop and operate Europe's IRIS2 connectivity network under new EU contract

ENERGY TECH
ENERGY TECH
SpaceX launches Space Force Rapid Response Trailblazer

GPS alternative for drone navigation leverages celestial data

Deciphering city navigation AI advances GNSS error detection

China advances next-generation BeiDou satellite navigation system

ENERGY TECH
Black box of Azerbaijan crashed plane sent to Brazil for investigation: authorities

South Korea begins lifting Jeju Air wreckage after fatal crash

Airbus US Space and Defense partners with Aerostar to advance stratospheric ISR technologies

Several airlines cancel flights to Russia after Azerbaijan Airlines crash

ENERGY TECH
MIT engineers grow "high-rise" 3D chips

Rice team advances quantum simulation for electron transfer understanding

New nanocrystals offer potential for faster energy-efficient computing

Integrated spin wave storage advances quantum networks

ENERGY TECH
Changes in store for atmospheric rivers

China incorporates small commercial satellites into weather services

ICEYE secures $65M funding extension reaching $158M total for 2024 investments

China builds large commercial radar satellite constellation

ENERGY TECH
Volunteers clean up Bali's beach from "worst" monsoon-driven trash

Oil from Russian tanker spill reaches Sevastopol

Indian duo self-immolate in Bhopal waste protest

Vietnam's capital blanketed by toxic smog

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.