Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Oscillating microscopic beads could be key to biolab on a chip
by David Chandler for MIT News
Boston MA (SPX) Sep 27, 2012


File image.

If you throw a ball underwater, you'll find that the smaller it is, the faster it moves: A larger cross-section greatly increases the water's resistance. Now, a team of MIT researchers has figured out a way to use this basic principle, on a microscopic scale, to carry out biomedical tests that could eventually lead to fast, compact and versatile medical-testing devices.

The results, based on work by graduate student Elizabeth Rapoport and assistant professor Geoffrey Beach, of MIT's Department of Materials Science and Engineering (DMSE), are described in a paper published in the journal Lab on a Chip. MIT graduate student Daniel Montana '11 also contributed to the research as an undergraduate.

The balls used here are microscopic magnetic beads that can be "decorated" with biomolecules such as antibodies that cause them to bind to specific proteins or cells; such beads are widely used in biomedical research.

The key to this new work was finding a way to capture individual beads and set them oscillating by applying a variable magnetic field. The rate of their oscillation can then be measured to assess the size of the beads.

When these beads are placed in a biological sample, biomolecules attach to their surfaces, making the beads larger - a change that can then be detected through the biomolecules effect on the beads' oscillation.

This would provide a way to detect exactly how much of a target biomolecule is present in a sample, and provide a way to give a virtually instantaneous electronic readout of that information.

This new technique, for the first time, allows these beads - each about one micrometer, or millionth of a meter, in diameter - to be used for precise measurements of tiny quantities of materials.

This could, for example, lead to tests for disease agents that would need just a tiny droplet of blood and could deliver results instantly, instead of requiring laboratory analysis.

In a paper published earlier this year in the journal Applied Physics Letters, the same MIT researchers described their development of a technique for creating magnetic tracks on a microchip surface, and rapidly transporting beads along those tracks. (The technology required is similar to that used to read and write magnetic data on a computer's hard disk.)

An operational device using this new approach would consist of a small reservoir above the tracks, where the liquid containing the magnetic beads and the biological sample would be placed.

Rather than pumping the fluid and the particles through channels, as in today's microfluidic devices, the particles would be controlled entirely through changes in applied magnetic fields.

By controlling the directions of magnetic fields in closely spaced adjacent regions, the researchers create tiny areas with extremely strong magnetic fields, called magnetic domain walls, whose position can be shifted along the track.

"We can use the magnetic domain walls to capture and transport the beads along the tracks," Beach says.

In the researchers' most recent paper, Rapoport explains, they have now shown that once a bead is captured, a magnetic field can be used to shake it back and forth. Then, the researchers measure how fast the bead moves as they change the frequency of the oscillation.

"The resonant frequency is a function of the bead size," she says - and could be used to reveal whether the bead has grown in size through attachment to a target biomolecule.

Besides being potentially quicker and requiring a far smaller biological sample to produce a result, such a device would be more flexible than existing chip-based biomedical tests, the researchers say.

While most such devices are specifically designed to detect one particular kind of protein or disease agent, this new device could be used for a wide variety of different tests, simply by inserting a fresh batch of fluid containing beads coated with the appropriate reactant. After the test, the material could be flushed out, and the same chip used for a completely different test by inserting a different type of magnetic beads.

"You'd just use it, wash it off, and use it again," Rapoport says.

There are dozens of types of magnetic beads commercially available now, which can be coated to react with many different biological materials, Beach explains, so such a test device could have enormous flexibility.

The MIT team has not yet used the system to detect biological molecules. Rather, they used magnetic beads of different sizes to demonstrate that their system is capable of detecting size differences corresponding to those between particles that are bound to biological molecules and those that are not. Having succeeded in this proof of concept, the researchers' next step will be to repeat the experiment using biological samples.

"We now have all the elements required to make a sensing device," Beach says. The next step is to combine the pieces in an operational device and demonstrate its performance.

The research was partly funded by MIT's Deshpande Center for Technological Innovation, and the test devices were made at the MIT NanoStructures Laboratory.

.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Optical Waveguide Connects Semiconductor Chips
Karlsruhe, Germany (SPX) Sep 24, 2012
A team of KIT researchers directed by Professor Christian Koos has succeeded in developing a novel optical connection between semiconductor chips. "Photonic wire bonding" reaches data transmission rates in the range of several terabits per second and is suited perfectly for production on the industrial scale. In the future, this technology may be used in high-performance emitter-rece ... read more


CHIP TECH
Pigs' revenge as 'Angry Birds' makers launch new game

Basing of first US Space Fence facility announced

US Bank admits 'attacks,' says customer data safe

Date palm juice: A potential new 'green' anti-corrosion agent for aerospace industry

CHIP TECH
Raytheon to provide Joint Tactical Terminal radios with latest security features to US Navy

Northrop Grumman Awarded Contract to Extend BACN Communications Connectivity to the Tactical Edge

Hughes Awarded Custom SATCOM Solutions Contract by GSA

4 SOPS begins testing newest AEHF satellite

CHIP TECH
California Governor Signs the Spaceflight Liability and Immunity Act

Processing is underway with the next Automated Transfer Vehicle to be orbited by Arianespace

Fueling underway with the Galileo satellites for next Soyuz launch from French Guiana

SpaceX, NASA Target Oct. 7 Launch For Resupply Mission To Space Station

CHIP TECH
Northrop Grumman to Improve Performance of MEMS Inertial Sensors for DARPA

Lockheed Martin Delivers Propulsion Core for the First GPS III Satellite

China launches another 2 navigation system satellites

Improved positioning indoors

CHIP TECH
Poland seeking 70 new military helicopters: PM

US Army Awards Lockheed Martin Apache M-TADS/PNVS Performance Based Logistics Contract

Boeing Receives Contract for 11 P-8A Poseidon Aircraft

Argentina, Venezuela to build trainer jet

CHIP TECH
Oscillating microscopic beads could be key to biolab on a chip

Japan Inc. comes together to save Renesas: report

Optical Waveguide Connects Semiconductor Chips

Single-atom writer a landmark for quantum computing

CHIP TECH
Landslide mapping in the Swiss Alps

China may toughen laws on 'illegal' mapping: state media

Radar altimetry gains altitude in Venice

Knight Foundation invests to accelerate data projects

CHIP TECH
Remarkable enzyme points the way to reducing nitric acid use in industry

Solving the stink from sewers

Measuring mercury levels: Nano-velcro detects water-borne toxic metals

Indonesian lives risked on 'world's most polluted' river




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement