Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Novel membrane reveals water molecules will bounce off a liquid surface
by Staff Writers
Boston MA (SPX) Mar 20, 2014


A water molecule bounces off a liquid surface from the vapor phase. Image courtesy Yukiko Oka.

Consider the nearest water surface: a half-full glass on your desk, a puddle outside your window, or a lake across town. All of these surfaces represent liquid-vapor interfaces, where liquid meets air. Molecules of water vapor constantly collide with these liquid surfaces: Some make it through the surface and condense, while others simply bounce off.

The probability that a vapor molecule will bounce, or reflect, off a liquid surface is a fundamental property of water, much like its boiling point. And yet, in the last century, there has been little agreement on the likelihood that a water molecule will bounce off the liquid surface.

"When a water vapor molecule hits a surface, does it immediately go into the liquid? Or does it come off and hit again and again, then eventually go in?" says Rohit Karnik, an associate professor of mechanical engineering at MIT. "There's a lot of controversy, and there's no easy way to measure this basic property."

Knowing this bouncing probability would give scientists an essential understanding of a variety of applications that involve water flow: the movement of water through soil, the formation of clouds and fog, and the efficiency of water-filtration devices.

This last application spurred Karnik and his colleagues - Jongho Lee, an MIT graduate student in mechanical engineering, and Tahar Laoui, a professor at the King Fahd University of Petroleum and Minerals (KFUPM) in Saudi Arabia - to study water's probability of bouncing. The group is developing membranes for water desalination; this technology's success depends, in part, on the ability of water vapor to flow through the membrane and condense on the other side as purified water.

By observing water transport through membranes with pores of various sizes, the group has measured a water molecule's probability of condensing or bouncing off a liquid surface at the nanoscale. The results, published in Nature Nanotechnology, could help in designing more efficient desalination membranes, and may also expand scientists' understanding of the flow of water at the nanoscale.

"Wherever you have a liquid-vapor surface, there is going to be evaporation and condensation," Karnik says. "So this probability is pretty universal, as it defines what water molecules do at all such surfaces."

Getting in the way of flow
One of the simplest ways to remove salt from water is by boiling and evaporating the water - separating it from salts, then condensing it as purified water. But this method is energy-intensive, requiring a great deal of heat.

Karnik's group developed a desalination membrane that mimics the boiling process, but without the need for heat. The razor-thin membrane contains nanoscale pores that, seen from the side, resemble tiny tubes. Half of each tube is hydrophilic, or water-attracting, while the other half is hydrophobic, or water-repellant.

As water flows from the hydrophilic to the hydrophobic side, it turns from liquid to vapor at the liquid-vapor interface, simulating water's transition during the boiling process. Vapor molecules that travel to the liquid solution on the other end of the nanopore can either condense into it or bounce off of it. The membrane allows higher water-flow rates if more molecules condense, rather than bounce.

Designing an efficient desalination membrane requires an understanding of what might keep water from flowing through it. In the case of the researchers' membrane, they found that resistance to water flow came from two factors: the length of the nanopores in the membrane and the probability that a molecule would bounce, rather than condense.

In experiments with membranes whose nanopores varied in length, the team observed that greater pore length was the main factor impeding water flow - that is, the greater the distance a molecule has to travel, the less likely it is to traverse the membrane. As pores get shorter, bringing the two liquid solutions closer together, this effect subsides, and water molecules stand a better chance of getting through.

But at a certain length, the researchers found that resistance to water flow comes primarily from a molecule's probability of bouncing. In other words, in very short pores, the flow of water is constrained by the chance of water molecules bouncing off the liquid surface, rather than their traveling across the nanopores. When the researchers quantified this effect, they found that only 20 to 30 percent of water vapor molecules hitting the liquid surface actually condense, with the majority bouncing away.

A no-bounce design
They also found that a molecule's bouncing probability depends on temperature: 64 percent of molecules will bounce at 90 degrees Fahrenheit, while 82 percent of molecules will bounce at 140 degrees. The group charted water's probability of bouncing in relation to temperature, producing a graph that Karnik says researchers can refer to in computing nanoscale flows in many systems.

"This probability tells us how different pore structures will perform in terms of flux," Karnik says. "How short do we have to make the pore and what flow rates will we get? This parameter directly impacts the design considerations of our filtration membrane."

Lee says that knowing the bouncing probability of water may also help control moisture levels in fuel cells.

"One of the problems with proton exchange membrane fuel cells is, after hydrogen and oxygen react, water is generated. But if you have poor control of the flow of water, you'll flood the fuel cell itself," Lee says. "That kind of fuel cell involves nanoscale membranes and structures. If you understand the correct behavior of water condensation or evaporation at the nanoscale, you can control the humidity of the fuel cell and maintain good performance all the time."

Reference: Need a water filter? Peel a tree branch

.


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Heat-Based Technique Offers New Way to Measure Microscopic Particles
Raleigh NC (SPX) Mar 14, 2014
Researchers have developed a new heat-based technique for counting and measuring the size of microscopic particles. The technique is less expensive than light-based techniques and can be used on a wider array of materials than electricity-based techniques. The research was performed by faculty at North Carolina State University, the University of North Carolina at Chapel Hill and Marquette ... read more


TECH SPACE
Heat-Based Technique Offers New Way to Measure Microscopic Particles

ISS dodges space junk

3D X-ray Film: Rapid Movements in Real Time

Reducing debris threat from satellite batteries

TECH SPACE
NGG Starts Integration Of High-Speed Downlink Antennas EHF Comms Payload

Catching signals from a speeding satellite

Raytheon receives contract modification on JPSS Common Ground System

ASC Signal Completes First Phase of Horizon Teleports Installation and Receives Additional Antenna Order

TECH SPACE
Proton-M with two Russian communication satellites on board blasts off from Baikonur

Proton-M carrier rocket with two satellites abroad installed on Baikonur launch pad

Lockheed Martin Commercial Launch Services Announces Industry-Unique "Refund Or Reflight" Program

ASTRA 5B delivered for integration on Ariane 5 launcher

TECH SPACE
Astro Aerospace Delivers Antennas For Next-Gen GPS III Satellites 3 through 6

ESA to certify first Galileo position fixes worldwide

Russia plans to launch new Glonass satellite on March 24

McMurdo Announces Global Availability of Maritime Fleet Management Software

TECH SPACE
VTOL X-Plane Program Takes Off

Luke Air Force Base Receives First F-35A Lightning II

LONGBOW Receives Support Contract for UK Apache Fire Control Systems

Central Asian states report no sightings of Malaysian jet

TECH SPACE
Scientists build thinnest-possible LEDs to be stronger, more energy efficient

Rice synthetic biologists shine light on genetic circuit analysis

Toshiba sues South Korean rival for corporate spying

Surface Characteristics Influence Cellular Growth on Semiconductor Material

TECH SPACE
New Satellite Movie Shows Massive Eastern US Cool Down

Planet Labs Set To Launch Largest Satellite Fleet In History

China deploys 21 satellites in search for missing plane

NASA Historic Earth Images Still Hold Research Value

TECH SPACE
Polluted Paris prepares for partial car ban

Paris makes public transport free to tackle severe pollution

Cold nights, warm days trigger pollution alerts across France

Japan's Panasonic to give China expats 'pollution pay'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.