Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
New study reveals challenge facing designers of future computer chips
by Staff Writers
Montreal, Canada (SPX) Nov 13, 2012


Illustration only.

To build the computer chips of the future, designers will need to understand how an electrical charge behaves when it is confined to metal wires only a few atom-widths in diameter. Now, a team of physicists at McGill University, in collaboration with researchers at General Motors R and D, have shown that electrical current may be drastically reduced when wires from two dissimilar metals meet.

The surprisingly sharp reduction in current reveals a significant challenge that could shape material choices and device design in the emerging field of nanoelectronics.

The size of features in electronic circuits is shrinking every year, thanks to the aggressive miniaturization prescribed by Moore's Law, which postulated that the density of transistors on integrated circuits would double every 18 months or so.

This steady progress makes it possible to carry around computers in our pockets, but poses serious challenges. As feature sizes dwindle to the level of atoms, the resistance to current no longer increases at a consistent rate as devices shrink; instead the resistance "jumps around," displaying the counterintuitive effects of quantum mechanics, says McGill Physics professor Peter Grutter.

"You could use the analogy of a water hose," Grutter explains. "If you keep the water pressure constant, less water comes out as you reduce the diameter of the hose. But if you were to shrink the hose to the size of a straw just two or three atoms in diameter, the outflow would no longer decline at a rate proportional to the hose cross-sectional area; it would vary in a quantized ('jumpy') way."

This "quantum weirdness" is exactly what the McGill and General Motors researchers observed, as described in a new paper appearing in Proceedings of the National Academy of Sciences. The researchers investigated an ultra-small contact between gold and tungsten, two metals currently used in combination in computer chips to connect different functional components of a device.

On the experimental side of the research, Prof. Grutter's lab used advanced microscopy techniques to image a tungsten probe and gold surface with atomic precision, and to bring them together mechanically in a precisely-controlled manner.

The electrical current through the resulting contact was much lower than expected. Mechanical modeling of the atomic structure of this contact was done in collaboration with Yue Qi, a research scientist with the General Motors R and D Center in Warren, MI.

State-of-the-art electrical modeling by Jesse Maassen in professor Hong Guo's McGill Physics research group confirmed this result, showing that dissimilarities in electronic structure between the two metals leads to a fourfold decrease in current flow, even for a perfect interface.

The researchers additionally found that crystal defects - displacements of the normally perfect arrangement of atoms - generated by bringing the two materials into mechanical contact was a further reason for the observed reduction of the current.

"The size of that drop is far greater than most experts would expect - on the order of 10 times greater," notes Prof. Grutter.

The results point to a need for future research into ways to surmount this challenge, possibly through choice of materials or other processing techniques. "The first step toward finding a solution is being aware of the problem," Grutter notes. "This is the first time that it has been demonstrated that this is a major problem" for nanoelectronic systems."

.


Related Links
McGill University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
No Japan electronics bailout, minister hints
Tokyo (AFP) Nov 9, 2012
A senior Japanese politician hinted Friday that a government bailout was not on the cards for the nation's struggling electronics giants, after embattled Sharp cast doubt on its own survival. Economy minister Seiji Maehara said the likes of Panasonic and Sharp, on track to book combined annual losses of more than $15.0 billion, should not expect the kind of taxpayer-funded rescue handed to o ... read more


CHIP TECH
Microsoft holds Windows Phone 8 hopes

Making a better invisibility cloak

Head of Windows unit leaves Microsoft

Online TEDTalks hit billion-view milestone

CHIP TECH
LynuxWorks LynxOS-SE Deployed by ITT Exelis in New Line of Software-Defined Radios

Digital Modular Radios For New US Navy Ships and Submarines

Raytheon BBN Technologies' WNaN next generation network software selected for NIE 13.1 experiment

Raytheon announces Small Format Guard to secure data transfer for mobile and tactical forces

CHIP TECH
Arianespace's fourth Spaceport mission with Soyuz ready for fueling

Ariane 5's sixth launch of 2012

Ariane 5 is poised for Arianespace's launch with the EUTELSAT 21B and Star One C3 satellites

Ariane 5 orbits EUTELSAT 21B and Star One C3 satellites

CHIP TECH
Quattro Group Gains Visibility And Control With Ctrack

Saudi Arabia to Launch Two Satellites

Nokia buys 3D mapping firm in location services push

Gazprom to Launch Two Satellites by Yearend

CHIP TECH
Lockheed Martin Continues To Deliver CBP P-3's Ahead Of Schedule

NGC Signs Danish Composite Manufacturer For F-35 Lightning II Program

F-35 Stopover in Marietta

EU freezes controversial aviation carbon tax

CHIP TECH
New study reveals challenge facing designers of future computer chips

No Japan electronics bailout, minister hints

Quantum kisses change the color of nothing

Ultrasensitive photon hunter

CHIP TECH
Surveying Earth's interior with atomic clocks

Storms, Ozone, Vegetation and More: NASA-NOAA Suomi NPP Satellite Returns First Year of Data

NASA's SPoRT Team Tracks Hurricane Sandy

Sizing up biomass from space

CHIP TECH
Toxic nickel found near leaking Finnish mine: agency

More landmine victims in Myanmar despite curbs on use

China to test 'social risk' of major factories: official

Smog in Indian capital blamed on vehicle increase




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement