Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
New silicon memory chip developed
by Staff Writers
London, UK (SPX) May 24, 2012


A photo of the UCL ReRAM device. Credit: UCL/Adnan Mehonic.

The first purely silicon oxide-based 'Resistive RAM' memory chip that can operate in ambient conditions - opening up the possibility of new super-fast memory - has been developed by researchers at UCL. Resistive RAM (or 'ReRAM') memory chips are based on materials, most often oxides of metals, whose electrical resistance changes when a voltage is applied - and they "remember" this change even when the power is turned off.

ReRAM chips promise significantly greater memory storage than current technology, such as the Flash memory used on USB sticks, and require much less energy and space.

The UCL team have developed a novel structure composed of silicon oxide, described in a recent paper in the Journal of Applied Physics, which performs the switch in resistance much more efficiently than has been previously achieved. In their material, the arrangement of the silicon atoms changes to form filaments of silicon within the solid silicon oxide, which are less resistive. The presence or absence of these filaments represents a 'switch' from one state to another.

Unlike other silicon oxide chips currently in development, the UCL chip does not require a vacuum to work, and is therefore potentially cheaper and more durable. The design also raises the possibility of transparent memory chips for use in touch screens and mobile devices.

The team have been backed by UCLB, UCL's technology transfer company, and have recently filed a patent on their device. Discussions are ongoing with a number of leading semiconductor companies.

Dr Tony Kenyon, UCL Electronic and Electrical Engineering, said: "Our ReRAM memory chips need just a thousandth of the energy and are around a hundred times faster than standard Flash memory chips. The fact that the device can operate in ambient conditions and has a continuously variable resistance opens up a huge range of potential applications.

"We are also working on making a quartz device with a view to developing transparent electronics."

For added flexibility, the UCL devices can also be designed to have a continuously variable resistance that depends on the last voltage that was applied. This is an important property that allows the device to mimic how neurons in the brain function. Devices that operate in this way are sometimes known as 'memristors'.

This technology is currently of enormous interest, with the first practical memristor, based on titanium dioxide, demonstrated in just 2008. The development of a silicon oxide memristor is a huge step forward because of the potential for its incorporation into silicon chips.

The team's new ReRAM technology was discovered by accident whilst engineers at UCL were working on using the silicon oxide material to produce silicon-based LEDs. During the course of the project, researchers noticed that their devices appeared to be unstable.

UCL PhD student, Adnan Mehonic, was asked to look specifically at the material's electrical properties. He discovered that the material wasn't unstable at all, but flipped between various conducting and non-conducting states very predictably.

Adnan Mehonic, also from the UCL Department of Electronic and Electrical Engineering, said: "My work revealed that a material we had been looking at for some time could in fact be made into a memristor.

"The potential for this material is huge. During proof of concept development we have shown we can programme the chips using the cycle between two or more states of conductivity. We're very excited that our devices may be an important step towards new silicon memory chips"

The technology has promising applications beyond memory storage. The team are also exploring using the resistance properties of their material not just for use in memory but also as a computer processor.

"Resistive switching in silicon suboxide films" is published online in the Journal of Applied Physics.

.


Related Links
University College London
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Performance boost for microchips
Aachen, Germany (SPX) May 24, 2012
The semiconductor industry is faced with the challenge of supplying ever faster and more powerful chips. The Next-Generation Lithography with EUV radiation will help meeting that challenge. Fraunhofer researchers have developed key components. Flat computers, powerful cell phones and tablets - the integrated circuits, our computers' power centers, are becoming increasingly smaller and more ... read more


CHIP TECH
Laser scan at full speed

Facebook makes mobile move after IPO flop

7-inch Google tablet said imminent

How ion bombardment reshapes metal surfaces

CHIP TECH
Researchers Improve Fast-Moving Mobile Networks

Second AEHF Military Communications Satellite Launched

Fourth Boeing-built WGS Satellite Accepted by USAF

Raytheon to Continue Supporting Coalition Forces' Information-Sharing Computer Network

CHIP TECH
SpaceX Launches NASA Demonstration Mission to ISS

SpaceX blasts off to space station in historic first

What Went Up Can Now Come Down With SpaceX Demo Flight

SpaceX capsule completes first tests before ISS docking

CHIP TECH
Beidou navigation system installed on more Chinese fishing boats

Scientists design indoor navigation system for blind

Chinese navigation system to cover Asia-Pacific this year

Northrop Grumman Successfully Demonstrates New Target Location Module

CHIP TECH
French leader's Brazil visit could hasten decision on jets

China criticises US vote on Taiwan fighter jet sales

Peru to upgrade fast aging air force jets

Military aviation: a new bomber and the fifth generation fighter planes

CHIP TECH
New silicon memory chip developed

Return of the vacuum tube

Performance boost for microchips

Quantum computing: The light at the end of the tunnel may be a single photon

CHIP TECH
City's population is counted from space

Unparalleled Views of Earth's Coast With HREP-HICO

Moscow court upholds ban against satellite image distributor

New Carbon-Counting Instrument Leaves the Nest

CHIP TECH
I. Coast toxic spill victims want compensation fund inquiry

Chemical exposure influences rat behavior for generations

Australian tug reaches ship adrift off Barrier Reef

Hungarian red mud plant ordered to solve dust scare




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement