New Miniaturized Device For Lab-On-A-Chip Separations
Washington DC (SPX) Jan 29, 2007 Researchers at the National Institute of Standards and Technology (NIST) have developed an elegantly simple, miniaturized technique for rapidly separating minute samples of proteins, amino acids and other chemical mixtures. A low-cost prototype device described in a recent paper(1) can run up to eight separations simultaneously in a space about the size of a quarter, highlighting the technique's potential for use in microfluidic "lab-on-a-chip" systems. Conventional electrophoresis instruments separate mixtures of electrically charged species--DNA fragments, for example--by injecting a discrete sample of the mixture at one end of a chemical race track, such as a capillary tube filled with a buffer solution, and applying a high voltage between the sample and the other end of the track. Depending on their size, charge and chemical "mobility," the individual components of the mixture move down the track at different rates, gradually separating into individual bands. If two of the components move at very similar rates, it will require a relatively long channel--up to 50 centimeters or longer--to separate them effectively. The new NIST technique, "gradient elution moving boundary electrophoresis" (GEMBE), works instead by opposing the movement of the mixture's components with a stream of buffering solution flowing at a variable rate. Like salmon swimming upstream, only the most mobile components can move up the channel against the highest buffer flow rates, but as that flow is reduced gradually, lesser mobility components begin to move. A sensor placed over the channel detects each new component as it arrives, GEMBE is ideally suited for use in microfluidic "lab-on-a-chip" devices. Components are selected by buffer flow-rate rather than distance, so the channel can be very short--less than a centimeter in NIST prototypes. It doesn't require injection of a discrete sample, which greatly simplifies chip plumbing. By precisely controlling the flow rate, a particular component can be "parked" under the detector as long as desired to get a good signal, and the device can be adjusted easily to accommodate different separations. The device is easy to build with simple machining or molding techniques and low-cost polymers, enabling inexpensive mass production. The technique has been validated at NIST with separations ranging from small dye molecules and amino acids to larger biomolecules, such as DNA. A prototype eight-channel GEMBE device built at NIST can produce a complete immunoassay calibration curve for insulin in a single run. NIST is applying for a patent on the method. (1) J.G. Shackman, M.S. Munson and D. Ross. "Gradient elution moving boundary electrophoresis for high-throughput multiplexed microfluidic devices." Anal. Chem., 79 (2), 565 -571, 2007. 10.1021/ac061759h S0003-2700(06)01759-8 on line at http://pubs.acs.org/cgi-bin/abstract.cgi/ancham/2007/79/i02/abs/ac061759h.html Related Links National Institute of Standards and Technology (NIST) The latest in computer chip technology Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
Californian Chemists Take Important Step Toward Building Molecular Computers Los Angeles CA (SPX) Jan 26, 2007 A team of UCLA and California Institute of Technology chemists reports in the Jan. 25 issue of the journal Nature the successful demonstration of a large-scale, "ultra-dense" memory device that stores information using reconfigurable molecular switches. This research represents an important step toward the creation of molecular computers that are much smaller and could be more powerful than today's silicon-based computers. |
|
The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement |