Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Negar Sani solved the mystery of the printed diode
by Staff Writers
Linkoping, Sweden (SPX) Jul 08, 2014


This video shows how a printed label picks up the radio signal from a telephone making a call, and uses the energy to switch the integrated display. This is only possible if there is a diode with GHz capacity that can rectify the signal. Image courtesy Laboratory of Organic Electronics, Linkoping University, Sweden.

With an article published in the Proceedings of the National Academy of Sciences in the United States of America (PNAS), a thirteen-year-long mystery that has involved a long series of researchers at both Linkoping University and Acreo Swedish ICT has finally been solved.

The article presents a diode in printed electronics that works in the GHz band, which opens up a new opportunity to send signals from a mobile phone to, for example, printed electronic labels. Energy from the radio signal is collected and used to switch the label's display. The diode being printed means that it is both cheap and simple to manufacture.

"This means that we can supply power to printed electronics within the 'internet of things' with the help of conventional mobile phones. This gives us new opportunities for communications," says Negar Sani, PhD student at the Laboratory for Organic Electronics at Linkoping University.

Researchers have long known that the diode works, but not how and why.

In 2001, Petronella Norberg at Acreo Swedish ICT, laid a disc of silicon in a mortar, ground it down and produced a silicon paste that she then used as ink in a printing press. She produced a functional printed diode - the electronic key component that, among other things, converts alternating current to direct current. But the diode only worked up to 1 MHz, and no immediate field of use could be found.

At Acreo Swedish ICT, a research team funded by the British company De La Rue, worked for several years on developing both the diode and new printing pastes. With a paste containing the transition metal niobium, in the form of niobium silicide, NbSi2, printed over the silicon paste, they got the whole thing to work at GHz as well.

"The results meant a world record for printed diodes, and we were also able to manufacture a demonstrator for De La Rue where the signal from a mobile phone was used to activate a printed display. We had demonstrated that it was possible to link paper to the Internet," says Goran Gustafsson, department head at Acreo Swedish ICT.

But still nobody knew how the diode worked.

Ms Sani has now taken the last decisive step toward solving the puzzle, naturally with the help of Professors Magnus Berggren and Xavier Crispin as well as Senior Lecturer and Project Manager Isak Engquist, and a number of people at Acreo Swedish ICT.

The results of Ms Sani's work showed that it must have to do with tunnel effects, a phenomenon in quantum physics that makes it so that particles can get past obstacles. In this case, nano-thin films (1-2 nm) are formed around the micrometer-sized grains of silicon, where the current between anodes (aluminium) and cathodes (silver and carbon) pass through, but only in one direction.

Thirteen years of work got an explanation - one that the editorial board of PNAS finally approved after more than five months of hard review by experts from various fields.

"This is the longest project I've worked on. What research sponsor wants to wait 13 years for publication? Without industry - De La Rue, in this case - we'd never have come this far. Now printed electronics are starting to get the same performance as traditional electronics, and this is another example of the fruitful combination of our research, developments at Acreo and needs from the industry," says Magnus Berggren, professor of Organic Electronics at Linkoping University.

.


Related Links
Linkoping University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
IBM to spend $3 bn aiming for computer chip breakthrough
New York (AFP) July 10, 2014
IBM announced plans Wednesday to pump $3 billion into an overhaul of computer chip technology to better meet modern demands of "Big Data" and computing pushed to the Internet "cloud." The New York-based technology veteran hopes to leave behind the silicon long used in computer chips for a material that could ramp up power while shrinking processors to molecular levels. Services and progr ... read more


CHIP TECH
GOES-R Magnetometer Ready for Spacecraft Integration

Saab, Selex ES sign radar contract deal

Royal Air Force's Tornado aircraft getting new RF jamming pods

Projecting a Three-Dimensional Future

CHIP TECH
Third MUOS satellite heads for final checkout

Saab reports U.S. Army order for radio systems

Thales enhancing communications of EU peacekeepers

Exelis enhancing communications for NATO country

CHIP TECH
SpaceX Falcon 9 v1.1 Flights Deemed Successful

ISS 'space truck' launch postponed: Arianespace

45th Space Wing launches 6 second-generation ORBCOMM satellites

Sanctions on Russian launchers confers advantage to others

CHIP TECH
Russian GLONASS to Boost Yield Capacity by 50 percent

US Refusal to Host GLONASS Base a Form of Competition with Russia

New device developed to defeat GPS jamming

EU selects CGI to support Galileo Commercial Service Initiative

CHIP TECH
US F-35 fighter will not fly at UK air show

Lockheed opening new office in Britain

Mobile air traffic control communications system makes debut

Airbus supplying more aircraft to Egyptian Air Force

CHIP TECH
The World's First Photonic Router

Negar Sani solved the mystery of the printed diode

Rice's silicon oxide memories catch manufacturers' eye

IBM to spend $3 bn aiming for computer chip breakthrough

CHIP TECH
NASA's Van Allen Probes Show How to Accelerate Electrons

ADS and Esri Take Satellite Imagery Services to a Premium Level

Hyperspec Sensors Target Vegetation Fluorescence

Ten-Year Endeavor: NASA's Aura Tracks Pollutants

CHIP TECH
Microplastics worse for crabs and other marine life than previously thought

New study links dredging to diseased corals

Italy cruise ship toxins threaten wildlife: activists

Straits of Mackinac 'worst possible place' for a Great Lakes oil spill




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.