Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Microscopy technique could help computer industry develop 3-D components
by Staff Writers
Washington DC (SPX) Jul 01, 2013


The three-dimensional tri-gate (FinFET) transistors shown here are among the 3-D microchip structures that could be measured using NIST's technique for improving through-focus scanning optical microscopy (TSOM). Credit: Courtesy of Intel Corp.

A technique developed several years ago at the National Institute of Standards and Technology (NIST) for improving optical microscopes now has been applied to monitoring the next generation of computer chip circuit components, potentially providing the semiconductor industry with a crucial tool for improving chips for the next decade or more.

The technique, called Through-Focus Scanning Optical Microscopy (TSOM), has now been shown able to detect tiny differences in the three-dimensional shapes of circuit components, which until very recently have been essentially two-dimensional objects.

TSOM is sensitive to features that are as small as 10 nanometers (nm) across, perhaps smaller-addressing some important industry measurement challenges for the near future for manufacturing process control and helping maintain the viability of optical microscopy in electronics manufacturing.

For decades, computer chips have resembled city maps in which components are essentially flat. But as designers strive to pack more components onto chips, they have reached the same conclusion as city planners: The only direction left to build is upwards. New generations of chips feature 3-D structures that stack components atop one another, but ensuring these components are all made to the right shapes and sizes requires a whole new dimension-literally-of measurement capability.

"Previously, all we needed to do was show we could accurately measure the width of a line a certain number of nanometers across," explains NIST's Ravikiran Attota. "Now, we will need to measure all sides of a three-dimensional structure that has more nooks and crannies than many modern buildings. And the nature of light makes that difficult."

Part of the trouble is that components now are growing so small that a light beam can't quite get at them. Optical microscopes are normally limited to features larger than about half the wavelength of the light used-about 250 nanometers for green light.

So microscopists have worked around the issue by lining up a bunch of identical components at regular distances apart and observing how light scatters off the group and fitting the data with optical models to determine the dimensions. But these optical measurements, as currently used in manufacturing, have great difficulty measuring newer 3-D structures.

Other non-optical methods of imaging such as scanning probe microscopy are expensive and slow, so the NIST team decided to test the abilities of TSOM, a technique that Attota played a major role in developing.

The method uses a conventional optical microscope, but rather than taking a single image, it collects 2-D images at different focal positions forming a 3-D data space. A computer then extracts brightness profiles from these multiple out-of-focus images and uses the differences between them to construct the TSOM image.

The TSOM images it provides are somewhat abstract, but the differences between them are still clear enough to infer minute shape differences in the measured structures-bypassing the use of optical models, which introduce complexities that industry must face.

"Our simulation studies show that TSOM might measure features as small as 10 nm or smaller, which would be enough for the semiconductor industry for another decade," Attota says. "And we can look at anything with TSOM, not just circuits. It could become useful to any field where 3-D shape analysis of tiny objects is needed."

R. Attota, B. Bunday and V. Vartanian. Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node. Applied Physics Letters, DOI: 10.1063/1.4809512, published online June 6, 2013.

.


Related Links
National Institute of Standards and Technology (NIST)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Large-scale quantum chip validated
Los Angeles CA (SPX) Jul 01, 2013
A team of scientists at USC has verified that quantum effects are indeed at play in the first commercial quantum optimization processor. The team demonstrated that the D-Wave processor housed at the USC-Lockheed Martin Quantum Computing Center behaves in a manner that indicates that quantum mechanics plays a functional role in the way it works. The demonstration involved a small subset of ... read more


CHIP TECH
Low-power Wi-Fi signal tracks movement -- even behind walls

Gartner trims global IT spending forecast for the year

China sets rare earth export quota for second half

EU approves compromise on 'shipbreaking' in South Asian countries

CHIP TECH
Mutualink Unveils Man-Portable Multimedia Interoperable Ops Fusion Kit with Secure Tactical 4G LTE Bubble Capability

USAF Awards Lockheed Martin Contract for IT and Telecommunications Services

Northrop Grumman Provides Fuel Quantity Indicator For E-3D AWACS

Canada Makes First Call On AEHF

CHIP TECH
Russian Proton M Rocket Explodes Just After Blast Off

Arianespace takes delivery of its next Ariane 5 at the Spaceport

SpaceX Will Launch Turkmenistan Satellite For Thales Alenia Space

New Mexico Space Grant Consortium student experiments blast into space from Spaceport America

CHIP TECH
India launches satellite for new navigation system

Beidou's second trial held in Yangtze Delta

The next batch of Galileo satellites

Raytheon's latest air traffic management systems go into continuous operation

CHIP TECH
Investigators stand by TWA explosion theory

Philippine president vows to rebuild air force by 2016

Lockheed Martin's Final JLTV Development Vehicle Rolls off Assembly Line

Maiden flight for Italian-assembled Chinook

CHIP TECH
Microscopy technique could help computer industry develop 3-D components

New low-cost, transparent electrodes

Taiwan's TSMC gets orders from Apple: report

Large-scale quantum chip validated

CHIP TECH
Astrium's Cloud Services will support Western Australia Lands Department

Five Years of Stereo Imaging for NASA's TWINS

Vegetation as Seen by Suomi NPP

How did a third radiation belt appear in the Earth's upper atmosphere

CHIP TECH
Thousands of fish die in contaminated Mexico reservoir

Singapore's clean image sullied by Indonesian smog

China and haze to dominate Asia security meeting

Mexico City trash-for-food market helps capital clean up




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement