Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Making a better invisibility cloak
by Staff Writers
Durham NC (SPX) Nov 13, 2012


This is Nathan Landy with cloaking device. Credit: Duke University Photography.

The first functional "cloaking" device reported by Duke University electrical engineers in 2006 worked like a charm, but it wasn't perfect. Now a member of that laboratory has developed a new design that ties up one of the major loose ends from the original device.

These new findings could be important in transforming how light or other waves can be controlled or transmitted. Just as traditional wires gave way to fiber optics, the new meta-material could revolutionize the transmission of light and waves.

Because the goal of this type of research involves taming light, a new field of transformational optics has emerged. The results of the Duke experiments were published online Nov. 11 in the journal Nature Materials.

The Duke team has extensive experience in creating "meta-materials," man-made objects that have properties often absent in natural ones.

Structures incorporating meta-materials can be designed to guide electromagnetic waves around an object, only to have them emerge on the other side as if they had passed through an empty volume of space, thereby cloaking the object.

"In order to create the first cloaks, many approximations had to be made in order to fabricate the intricate meta-materials used in the device," said Nathan Landy, a graduate student working in the laboratory of senior investigator David R. Smith, William Bevan Professor of electrical and computer engineering at Duke's Pratt School of Engineering.

"One issue, which we were fully aware of, was loss of the waves due to reflections at the boundaries of the device," Landy said.

He explained that it was much like reflections seen on clear glass. The viewer can see through the glass just fine, but at the same time the viewer is aware the glass is present due to light reflected from the surface of the glass. "Since the goal was to demonstrate the basic principles of cloaking, we didn't worry about these reflections."

Landy has now reduced the occurrence of reflections by using a different fabrication strategy. The original cloak consisted of parallel and intersecting strips of fiberglass etched with copper.

Landy's cloak used a similar row-by-row design, but added copper strips to create a more complicated - and better performing - material. The strips of the device, which is about two-feet square, form a diamond-shape, with the center left empty.

When any type of wave, like light, strikes a surface, it can be either reflected or absorbed, or a combination of both. In the case of earlier cloaking experiments, a small percentage of the energy in the waves was absorbed, but not enough to affect the overall functioning of the cloak.

The cloak was naturally divided into four quadrants. Landy explained the "reflections" noted in earlier cloaks tended to occur along the edges and corners of the spaces within and around the meta-material.

"Each quadrant of the cloak tended to have voids, or blind spots, at their intersections and corners with each other," Landy said. "After many calculations, we thought we could correct this situation by shifting each strip so that it met its mirror image at each interface.

"We built the cloak, and it worked," he said. "It split light into two waves which traveled around an object in the center and re-emerged as the single wave with minimal loss due to reflections."

Landy said this approach could have more applications than just cloaks. For example, meta-materials can "smooth out" twists and turns in fiber optics, in essence making them seem straighter. This is important, Landy said, because each bend attenuates the wave within it.

The researchers are now working to apply the principles learned in the latest experiments to three dimensions, a much greater challenge than in a two-dimensional device.

"A full-parameter unidirectional metamaterial cloak for microwaves," Nathan Landy and David R. Smith; Nature Materials, Nov. 12, 2012. DOI: 10.1038/nmat3476

.


Related Links
Duke University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Nanocrystals and nickel catalyst substantially improve light-based hydrogen production
Rochester NY (SPX) Nov 09, 2012
Hydrogen is an attractive fuel source because it can easily be converted into electric energy and gives off no greenhouse emissions. A group of chemists at the University of Rochester is adding to its appeal by increasing the output and lowering the cost of current light-driven hydrogen-production systems. The work, funded by the U.S. Department of Energy, was led by chemistry professors R ... read more


TECH SPACE
Microsoft holds Windows Phone 8 hopes

Making a better invisibility cloak

Head of Windows unit leaves Microsoft

Online TEDTalks hit billion-view milestone

TECH SPACE
LynuxWorks LynxOS-SE Deployed by ITT Exelis in New Line of Software-Defined Radios

Digital Modular Radios For New US Navy Ships and Submarines

Raytheon BBN Technologies' WNaN next generation network software selected for NIE 13.1 experiment

Raytheon announces Small Format Guard to secure data transfer for mobile and tactical forces

TECH SPACE
Arianespace's fourth Spaceport mission with Soyuz ready for fueling

Ariane 5's sixth launch of 2012

Ariane 5 is poised for Arianespace's launch with the EUTELSAT 21B and Star One C3 satellites

Ariane 5 orbits EUTELSAT 21B and Star One C3 satellites

TECH SPACE
Quattro Group Gains Visibility And Control With Ctrack

Saudi Arabia to Launch Two Satellites

Nokia buys 3D mapping firm in location services push

Gazprom to Launch Two Satellites by Yearend

TECH SPACE
Lockheed Martin Continues To Deliver CBP P-3's Ahead Of Schedule

NGC Signs Danish Composite Manufacturer For F-35 Lightning II Program

F-35 Stopover in Marietta

EU freezes controversial aviation carbon tax

TECH SPACE
New study reveals challenge facing designers of future computer chips

No Japan electronics bailout, minister hints

Quantum kisses change the color of nothing

Ultrasensitive photon hunter

TECH SPACE
Surveying Earth's interior with atomic clocks

Storms, Ozone, Vegetation and More: NASA-NOAA Suomi NPP Satellite Returns First Year of Data

NASA's SPoRT Team Tracks Hurricane Sandy

Sizing up biomass from space

TECH SPACE
Toxic nickel found near leaking Finnish mine: agency

More landmine victims in Myanmar despite curbs on use

China to test 'social risk' of major factories: official

Smog in Indian capital blamed on vehicle increase




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement