. Space Industry and Business News .




.
CHIP TECH
Like fish on waves electrons go surfing
by Staff Writers
Bochum, Germany (SPX) Sep 27, 2011

File image.

Physicists at the RUB, working in collaboration with researchers from Grenoble and Tokyo, have succeeded in taking a decisive step towards the development of more powerful computers. They were able to define two little quantum dots (QDs), occupied with electrons, in a semiconductor and to select a single electron from one of them using a sound wave, and then to transport it to the neighbouring QD.

A single electron "surfs" thus from one quantum dot to the next like a fish on a wave. Such manipulation of a single electron will in the future also enable the combination of considerably more complex quantum bits instead of classical bits ("0" and "1" states). The researchers have reported their results in Nature.

Semiconductor physics: a fisherman's dream
Electrons can move as freely as fish in water in electric conductors (metals) and semiconductors such as silicon (Si) or gallium arsenide (GaAs), albeit not "swimming" of their own but moving owing to differences in voltage. Inside a metal, they are present as a huge number of fish that fill nearly the entire volume of water.

In semiconductors, this "fish density" is not as high and so the distance between the electrons (fish) is much larger. The electrons can be concentrated in a thin layer near the surface by the application of an external voltage.

The new method that the international team of researchers has developed now fulfils this "fisherman's dream" for semiconductor physicists. The electron "fish" are all in one layer close to the surface and easily, individually accessible from the surface.

Fishing one from the quantum dot
Prof. Andreas Wieck, physicist at the RUB, points out that there are, however no, "big fish," all electrons being similar and even always identical, undistinguishable objects.

The method that the researchers from Germany, France and Japan used, nevertheless enables the "emission" of individual electrons from the QD, moving them over a specific distance and then detecting them at the neighbouring QD.

A distance of four micrometres ( m) was used in the experiment - this is twenty times larger than a highly integrated transistor.

Targeted transport of individual electrons is possible in the following way: First, a QD is defined between the tips of four electrodes to form this zero-dimensional object, containing some hundred electrons.

The scientists subsequently send a sound wave along the semiconductor surface using interdigital (like two combs fitted together without touching each other) electrodes to which they apply a radio frequency voltage.

This method functions in the opposite way as the electrical discharge of a piezo ignition system in which a crystal is deformed to attain a voltage. The researchers applied voltage to the crystal and thus deform it, and the alternating voltage leads to the formation of a sound wave.

The fish surfs on the wave
In a sample, this wave moves, for example, from left to right through the quantum dot at the velocity of sound - inside the crystal at three kilometres per second. Its height is adjusted so that it extracts exactly one "fish" from it. The latter subsequently surfs on the wave in a one-dimensional channel. The "fish" arrives at the neighbouring quantum dot 4 m to the right thereof.

The researchers were able to attain good statistics by repetition of the waves and measurements and thus capable of determining the reliability of the method. During the first experiments, the probability of emission and detection of a single electron with the wave was 96 and 92%, respectively.

The innovation: aligning the fish
It is not possible to differentiate between the electrons "fish", but they can be differently aligned because they rotate like little spinning tops.

This is called the "spin" of the electron. For example one can align a fish with "its head upwards," let it be transported with the wave, and then detect it again at the target quantum dot still having "its head upwards."

The time for the spin to change is longer than the surfing time on the wave, so the probability of this occurring is very high. The quantum bits of the future will also consist of such spin-polarized electrons.

The researchers attained their results with samples prepared by so-called molecular beam epitaxy at the chair of Applied Solid State Physics at the Ruhr University Bochum.

They were structured in Tokyo and subsequently measured in Grenoble. But not only the samples, also a further development of this concept originates from Bochum: Prof. Wieck already published his vision of an electron directional coupler with two parallel one-dimensional channels, in which the electrons can skip from one to the other channel, 21 years ago.

The research team has in the meantime realized this vision based on the results presented here. A further publication is therefore to follow shortly.

Related Links
Ruhr-University Bochum
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




 

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Scientists play ping-pong with single electrons
Cambridge UK (SPX) Sep 23, 2011
Scientists at Cambridge University have shown an amazing degree of control over the most fundamental aspect of an electronic circuit, how electrons move from one place to another. Researchers from the University's Cavendish Laboratory have moved an individual electron along a wire, batting it back and forth over sixty times, rather like the ball in a game of ping-pong. The research f ... read more


CHIP TECH
Amazon expected to unveil tablet at mystery event

Sony uniting strengths at online network

Nanoplasmonics And Metamaterials

Lehigh University ceramics researchers shed light on metal embrittlement

CHIP TECH
Russia launches military satellite after delay

Raytheon Fields First AEHF Satellite Communications Terminals to Tactical Units

Harris unveils new systems

Boeing Receives Additional Wideband Global SATCOM Orders

CHIP TECH
Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

Ariane rocket launches satellites after strike delay

Double prime for Astrium on next Ariane launch

CHIP TECH
Anger as GPS drives tourists to Hollywood icon

Swedish daycare to test GPS for tracking kids

Honeywell Unveils New Version of ViewPoint

Russia set to launch Glonass-M satellite on Oct. 1

CHIP TECH
Airlines decry EU carbon emissions scheme

'E-gate' adds face recognition to airline security

Higher airline prices loom under EU emissions scheme

Painting The Skies Green Over Santa Rosa

CHIP TECH
Like fish on waves electrons go surfing

Scientists play ping-pong with single electrons

Samsung starts new chip line to boost flash memory

RIM shares fall on disappointing results

CHIP TECH
Russia may launch its first Earth remote sensing satellite in 2012

Astrotech Subsidiary Wins Contract for NASA Mission

Japanese meteorological firm to launch satellite to track Arctic sea ice

ERS satellite missions complete after 20 years

CHIP TECH
Nitrate levels rising in northwestern Pacific

China shuts lead plants on pollution fears

Mathematician fights Bucharest's 'cultural parricide'

Humanity falls deeper into ecological debt: study


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement