. Space Industry and Business News .




.
TECH SPACE
Harvard physicists demonstrate a new cooling technique for quantum gases
by Staff Writers
Boston MA (SPX) Dec 29, 2011

illustration only

Physicists at Harvard University have realized a new way to cool synthetic materials by employing a quantum algorithm to remove excess energy.

The research, published this week in the journal Nature, is the first application of such an "algorithmic cooling" technique to ultra-cold atomic gases, opening new possibilities from materials science to quantum computation.

"Ultracold atoms are the coldest objects in the known universe," explains senior author Markus Greiner, associate professor of Physics at Harvard. "Their temperature is only a billionth of a degree above absolute zero temperature, but we will need to make them even colder if we are to harness their unique properties to learn about quantum mechanics."

Greiner and his colleagues study quantum many-body physics, the exotic and complex behaviors that result when simple quantum particles interact. It is these behaviors which give rise to high-temperature superconductivity and quantum magnetism, and that many physicists hope to employ in quantum computers.

"We simulate real-world materials by building synthetic counterparts composed of ultra-cold atoms trapped in laser lattices," says co-author Waseem Bakr, a graduate student in physics at Harvard. "This approach enables us to image and manipulate the individual particles in a way that has not been possible in real materials."

The catch is that observing the quantum mechanical effects that Greiner, Bakr and colleagues seek requires extreme temperatures.

"One typically thinks of the quantum world as being small," says Bakr, " but the truth is that many bizarre features of quantum mechanics, like entanglement, are equally dependent upon extreme cold."

The hotter an object is, the more its constituent particles move around, obscuring the quantum world much as a shaken camera blurs a photograph.

The push to ever-lower temperatures is driven by techniques like "laser cooling" and "evaporative cooling," which are approaching their limits at nanoKelvin temperatures. In a proof-of-principle experiment, the Harvard team has demonstrated that they can actively remove the fluctuations which constitute temperature, rather than merely waiting for hot particles to leave as in evaporative cooling.

Akin to preparing precisely one egg per dimple in a carton, this "orbital excitation blockade" process removes excess atoms from a crystal until there is precisely one atom per site.

"The collective behaviors of atoms at these temperatures remain an important open question, and the breathtaking control we now exert over individual atoms will be a powerful tool for answering it," said Greiner. "We are glimpsing a mysterious and wonderful world that has never been seen in this way before."

Greiner and Bakr's co-authors in Harvard's Department of Physics are Philipp Preiss, Eric Tai, Ruichao Ma and Jonathan Simon.

Related Links
Harvard University
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Not Only Invisible, but Also Inaudible
Karlsruhe, Germany (SPX) Dec 27, 2011
Progress of metamaterials in nanotechnologies has made the invisibility cloak, a subject of mythology and science fiction, become reality: Light waves can be guided around an object to be hidden, in such a way that this object appears to be non-existent. This concept applied to electromagnetic light waves may also be transferred to other types of waves, such as sound waves. Researchers fro ... read more


TECH SPACE
The art of molecular carpet-weaving

Kindle sales on fire: Amazon

Harvard physicists demonstrate a new cooling technique for quantum gases

Tablets, e-readers closing book on ink-and-paper era

TECH SPACE
Raytheon's Navy Multiband Terminal Tests With On-Orbit AEHF Satellite

Northrop Grumman And ITT Exelis Team For Army Vehicular Radio

Lockheed Martin Ships First Mobile User Objective System Satellite To Cape For Launch

Satellite Tracking Specialist, Track24, wins Canadian Government Contract

TECH SPACE
Soyuz poised for Globalstar second-generation satellite launch at Baikonur

Launch of Russian Proton-M carrier rocket postponed

Russian satellite crashes into Siberia after launch

Next ESA Astronaut Ready For Launch As Soyuz Rolls Out

TECH SPACE
China's satellite navigation system live: Xinhua

GMV tracks the first Galileo IOV Satellite

GIS Degree A Safe Bet for Professionals in the Ever-Growing Oil Industry

Lockheed Martin Delivers GPS 3 Pathfinder Satellite to Denver on Schedule

TECH SPACE
US issues alert over Alaska volcano cloud

Raytheon to Provide Improved Surveillance Capability for National Airspace System

Taiwan, Hong Kong sign new aviation deal

Airlines face EU pollution bill from New Year

TECH SPACE
New technique makes it easier to etch semiconductors

Stanford engineers achieve record conductivity in strained lattice organic semiconductor

New device could bring optical information processing

Terahertz pulse increases electron density 1,000-fold

TECH SPACE
TRMM Satellite Measured Washi's Deadly Rainfall

First ever direct measurement of the Earth's rotation

Satellites can help to grow the perfect grape

China launches high-resolution remote-sensing satellite

TECH SPACE
Benefits of new air quality rules greatly outweigh costs

Spilled oil unexpectedly lethal to fish embryos in shallow, sunlit waters

Australian miner says any derailment spill 'diluted'

Novel device removes heavy metals from water


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement