|
. | . |
|
by Staff Writers Kyoto, Japan (SPX) Sep 10, 2014
Researchers from Kyoto University in Japan have developed a novel way to waterproof new functionalized materials involved in gas storage and separation by adding exterior surface grooves. Their study, published in the journal Angewandte Chemie, provides a blueprint for researchers to build similar materials involved in industrial applications, such as high performance gas separation and energy storage. The materials, also known as porous coordination polymers (PCPs), are hollow nanoscale cage-like structures with the ability to house molecules within their empty cavities. This behavior is particularly useful when selectively isolating chemicals of interest from mixtures such as gases. However, one drawback of using PCPs and other materials typically created in the laboratory, is their practical use in natural situations where water is abundantly present. "These materials are highly reactive with water, leading to their instability and subsequent decomposition," said Masakazu Higuchi, who was involved in the study. "Thus, in order to use them in real life situations, we need to develop PCPs with the ability to keep water out while allowing organic molecules of interest in." To do this, the scientists -- from Kyoto University's Institute for Cell-Material Sciences (iCeMS) -- designed grooves onto the exterior surface of PCPs, thereby introducing a rough texture that in turn highly repelled water. At the same time, organic substances could enter PCPs based on size, demonstrating selectivity. "The new PCPs we synthesized were highly stable, and incredibly water resistant as they specifically removed organic solvents like benzene and toluene from mixed solutions," said Koya Prabhakara Rao, another author involved in the study. "Our method is the first to be conducted at the nanoscale, and serves as a simpler means to maintain functional properties of PCPs while preventing them from breaking down in the presence of water," said iCeMS Director Susumu Kitagawa, who was the principal investigator of the study.
Related Links Institute for Integrated Cell-Material Sciences (iCeMS) Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |