|
. | . |
|
by Staff Writers Akron OH (SPX) Jun 14, 2013
Think about windows coated with transparent film that absorbs harmful ultraviolet sunrays and uses them to generate electricity. Consider a water filtration membrane that blocks viruses and other microorganisms from water, or an electric car battery that incorporates a coating to give it extra long life between charges. The self-assembled copolymer block film that makes it all possible is now being fabricated with intricately organized nanostructures, giving them multiple functions and flexibility on a macroscale level never before seen. Gurpreet Singh, a Ph.D. candidate in The University of Akron College of Polymer Science and Polymer Engineering, led a team of researchers to devise a method that enables the films to assemble themselves and allows them to serve as templates or directly as end products. The films can be embedded with nanoparticles that enable everything from data storage to water purification.
Breakthrough with many functions "We have moved films manufacturing from microns to meter scale, opening pathways from the lab to fabrication," Karim says. "Fundamentally, it allows us to practice nanoscience on a large scale. We can now produce these films quickly and inexpensively, yet with precision and without compromising quality." Created with speed and uniformity, compatible with flexible surfaces, and subjected to temperature extremes, the copolymer thin films - developed at the National Polymer Innovation Center at UA - are noted in two recent American Chemical Society Nano journal articles: "Dynamic Thermal Field-Induced Gradient Soft-Shear for Highly Oriented Block Copolymer Thin Films"and "Large-Scale Roll-to-Roll Fabrication of Vertically Oriented Block Copolymer Thin Films."
Market-ready technology "We revived the technology and made it scalable, opening opportunities for full-scale manufacturing," Karim says, noting that IBM has expressed interest in continuing the research and development of the technology, and is exploring applications ranging from membranes for batteries to high-density magnetic tape storage. "The process should be of interest to a broad range of industries - from high-tech to low-tech - worldwide," Karim adds. "Manufacturing of these nanostructures can be done on industrial platforms such as UA's roll-to-roll manufacturing (developed by collaborator Distinguished Professor of Polymer Engineering Miko Cakmak) at relatively high speeds not possible previously." American Chemical Society Nano journal articles: "Dynamic Thermal Field-Induced Gradient Soft-Shear for Highly Oriented Block Copolymer Thin Films" and "Large-Scale Roll-to-Roll Fabrication of Vertically Oriented Block Copolymer Thin Films."
Related Links University of Akron College Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |