Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Electronic nose out in front
by Staff Writers
Washington DC (SPX) May 04, 2012


File image.

Chemical sensors are exceedingly good at detecting a single substance or a class of chemicals, even at highly rarified concentrations. Biological noses, however, are vastly more versatile and capable of discriminating subtle cues that would confound their engineered counterparts.

Unfortunately, even highly trained noses do leave a certain ambiguity when relaying a signal and are not particularly suited for work in specialized situations like operating rooms.

A new DNA-based chemical sensor appears to be both extremely sensitive and discerning, making it an important stride on the path to an all-electronic nose.

A team of researchers report in a paper published in the American Institute of Physics' journal AIP Advances that specially tailored strands of DNA attached to carbon nanotubes can tell the difference between very similar molecules, even those that have an identical chemical makeup.

"We're trying to develop this into an electronic nose system," says A.T. Charlie Johnson, a physicist at the University of Pennsylvania and study co-author.

"We used this system to distinguish between optical isomers, molecules that are nearly identical except that one is structurally reversed - a mirror image."

The system works by affixing DNA strands to carbon nanotubes, which are excellent electrical conductors.

The DNA strands have been fine-tuned to respond to particular chemicals, so when strands come in contact with a target chemical - even at very low concentrations - it produces a measurable electrical signal along the nanotube. The sensors were able to check for molecules that differ by as little as one carbon atom.

Though the researchers are not the first to observe this effect, they have achieved an unprecedented level of differentiation for an all-electronic chemical detector.

"What I'm focusing on is the size of the difference in the signal," says Johnson.

The researchers are next interested in creating something akin to an actual electronic nose consisting of many individual DNA-based sensors performing the same role as an olfactory receptor.

The goal is to have a system that is highly versatile and sensitive with wide-scale applications. For example, the chemical dimethylsulfone is associated with skin cancer. The human nose cannot detect this volatile but it could be detected with the new sensor at concentrations as low as 25 parts per billion.

Article: "DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers" is published in AIP Advances.

.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Squid and zebrafish cells inspire camouflaging smart materials
Bristol UK (SPX) May 04, 2012
Researchers from the University of Bristol have created artificial muscles that can be transformed at the flick of a switch to mimic the remarkable camouflaging abilities of organisms such as squid and zebrafish. They demonstrate two individual transforming mechanisms that they believe could be used in 'smart clothing' to trigger camouflaging tricks similar to those seen in nature. " ... read more


TECH SPACE
At smallest scale, liquid crystal behavior portends new materials

Electronic nose out in front

Squid and zebrafish cells inspire camouflaging smart materials

Apple iPad outmuscles Android in global tablet sales

TECH SPACE
Fourth Boeing-built WGS Satellite Accepted by USAF

Raytheon to Continue Supporting Coalition Forces' Information-Sharing Computer Network

Northrop Grumman Wins Contract for USAF Command and Control Modernization Program

TacSat-4 Enables Polar Region SatCom Experiment

TECH SPACE
SpaceX delays ISS launch again

500 Students Participate in NASA Student Launch Projects Challenge

A highly symbolic mission is reflected in words and images on Ariane 5's payload fairing

A "mirror image" payload refueling for Arianespace's next Ariane 5 mission

TECH SPACE
Czech Republic approves EU Galileo agency move to Prague

China launches two navigation satellites

Astrium built Galileo satellites fit and fully operational in orbit

First payload ready for next batch of Galileo satellites

TECH SPACE
Migratory locusts in a wind tunnel

Australia warning over smouldering iPhone incident

China Eastern to buy 20 Boeing 777-300s

JAL could go public again in July 2012: report

TECH SPACE
SK Hynix pulls out of bid for Japan's Elpida

Electric charge disorder: A key to biological order?

With new design, bulk semiconductor proves it can take the heat

Electron politics: Physicists probe organization at the quantum level

TECH SPACE
Report warns of rapid decline in US Earth observation capabilities

Lockheed Martin Completes Key Integration Milestone on GeoEye-2

NASA Image Gallery Highlights Earth's Changing Face

Risat-1 satellite raised to its final intended orbit

TECH SPACE
China says shuts Coke plant after chlorine reports

China's economic growth has pollution cost

Scientists find higher concentrations of heavy metals in post-oil spill oysters from Gulf of Mexico

Green-glowing fish provides new insights into health impacts of pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement