Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Discovery is key to metal wear in sliding parts
by Staff Writers
West Lafayette IN (SPX) Jul 30, 2014


This sequence of images reveals surprising fluid-like behavior in a solid piece of metal sliding over another, forming defects leading to wear in metal parts. (Top) Two image frames of the material flow showing how these defects are spawned in the wake of the contact. (Bottom) Scanning electron microscope pictures of the corresponding wear surfaces showing a tear and a crack. Wear particles are formed when the tears and cracks detach from the surfaces. Image courtesy Purdue University School of Industrial Engineering image/Anirban Mahato.

Researchers have discovered a previously unknown mechanism for wear in metals: a swirling, fluid-like microscopic behavior in a solid piece of metal sliding over another. The findings could be used to improve the durability of metal parts in numerous applications.

"Wear is a major cause of failure in engineering applications," said Srinivasan Chandrasekar, a Purdue University professor of industrial engineering and materials engineering. "However, our findings have implications beyond wear itself, extending to manufacturing and materials processing."

The findings are the result of a collaboration of researchers from Purdue, the Indian Institute of Science in Bangalore, India, and M4 Sciences, a company in West Lafayette, Indiana.

"Using high-resolution imaging of sliding contacts in metals, we have demonstrated a new way by which wear particles and surface defects can form," said Purdue postdoctoral research associate Anirban Mahato, who is working with Chandrasekar; Narayan Sundaram, an assistant professor at the Indian Institute of Science; and Yang Guo, a research scientist at M4 Sciences.

Findings are detailed in a research paper to appear in Proceedings of the Royal Society A, a publication of the Royal Society in the United Kingdom.

The researchers, using a microscope, high-speed camera and other tools, had previously revealed the formation of bumps, folds and vortex-like features on sliding metal surfaces. The new findings build on the previous paper, published in 2012 in Physical Review Letters, to show how the behavior leads to cracks and wear particles.

The findings were counter-intuitive because the experiment was conducted at room temperature, and the sliding conditions did not generate enough heat to soften the metal. Yet, the swirling flow is more like behavior seen in fluids than in solids, Chandrasekar said.

The team observed what happens when a wedge-shaped piece of steel slides over a flat piece of aluminum or copper. The metals are commonly used to model the mechanical behavior of metals.

"We speculated in the earlier paper that the swirly fluid-like surface flow discovered on sliding metal surfaces is likely to impact wear in sliding metal systems," he said. "Now we are confirming this speculation by direct observations."

The observations show how tiny bumps form in front of the wedge, followed by the swirling movement. When the wedge angle is shallow, the flow is laminar, or smooth. However, it changes to a swirly flow when the angle is adjusted to a less-shallow angle, mimicking what happens in actual sliding metal parts.

As the wedge slides across the metal specimen, folds form between the bumps, and then the folds transform into tears and cracks in the wake of the wedge, eventually falling off as wear particles.

"A single sliding pass is sufficient to damage the surface, and subsequent passes result in the generation of platelet-like wear particles," Chandrasekar said.

The behavior was captured in movies that show the flow in color-coded layers just below the surfaces of the copper and aluminum specimens.

The defects range in size from 5 to 25 microns and are similar to those found in sliding components such as parts in automotive engines, compressors and numerous types of equipment and machinery.

"In the past we only saw these features after they had formed, and we attributed them to various possible mechanisms," he said.

"Here, we show a mechanism for how they are formed. The defect features observed also occur in surfaces created by manufacturing processes like grinding, polishing, burnishing, peening, drawing, extrusion, rolling, and so on, which are all commonly used in making structural and mechanical components in the ground transportation, aerospace, sheet- and wire-metals processing, and energy systems sectors."

Ongoing research will explore potential routes to reduce wear arising from this type of mechanism. Metals are made of groups of crystals called grains. Future work will study how a material's grain size and ductility influence this type of wear, how these types of surface defects in manufacturing processes can be eliminated through the modified design of tools and dies, improved models for sliding wear and wear-control strategies.

"We want to look at this mechanism in materials that have smaller crystals - in the 5-30 micron range," Chandrasekar said. "We want to show that the mechanism is more general and extends down to even finer-grained metals."

The researchers also have developed a theory and simulation for the mechanism. The work has been funded by the U.S. Army Research Office and the National Science Foundation.

Two videos showing the swirly flow and wear-particle formation, respectively, are available at here and here.

.


Related Links
Purdue University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Carbyne morphs when stretched
Houston TX (SPX) Jul 28, 2014
Applying just the right amount of tension to a chain of carbon atoms can turn it from a metallic conductor to an insulator, according to Rice University scientists. Stretching the material known as carbyne - a hard-to-make, one-dimensional chain of carbon atoms - by just 3 percent can begin to change its properties in ways that engineers might find useful for mechanically activated nanoscale ele ... read more


TECH SPACE
Building 'invisible' materials with light

Laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster

Amazon launches 3D printing store

Carbyne morphs when stretched

TECH SPACE
Harris receives order for new tactical radios

Third MUOS satellite heads for final checkout

Saab reports U.S. Army order for radio systems

Thales enhancing communications of EU peacekeepers

TECH SPACE
China to launch satellite for Venezuela

SpaceX Soft Lands Falcon 9 Rocket First Stage

SpaceX releases video of rocket splashing into the ocean

SpaceX Falcon 9 v1.1 Flights Deemed Successful

TECH SPACE
Russian GLONASS to Boost Yield Capacity by 50 percent

US Refusal to Host GLONASS Base a Form of Competition with Russia

New device developed to defeat GPS jamming

EU selects CGI to support Galileo Commercial Service Initiative

TECH SPACE
Law of physics governs airplane evolution

France receives upgraded AWACS plane

Boeing boosts 2014 profit forecast after strong Q2

Sweden not a bidder for fighter procurement by Denmark

TECH SPACE
Layered 2D crystals might enable superconductors at high temps

Quantum leap in lasers brightens future of quantum computing

Technique simplifies the creation of high-tech crystals

Moore's Law Gets Boost With Fundamental Chemistry Finding

TECH SPACE
NASA's Van Allen Probes Show How to Accelerate Electrons

ADS and Esri Take Satellite Imagery Services to a Premium Level

Ten-Year Endeavor: NASA's Aura Tracks Pollutants

Hyperspec Sensors Target Vegetation Fluorescence

TECH SPACE
Footprints suggest tyrannosaurs were gregarious

Microplastics worse for crabs and other marine life than previously thought

New study links dredging to diseased corals

Italy cruise ship toxins threaten wildlife: activists




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.