Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
D-Wave chip passes rigorous quantum-ness tests
by Staff Writers
Los Angeles CA (SPX) Mar 10, 2014


File image.

With cutting-edge technology, sometimes the first step scientists face is just making sure it actually works as intended.

The USC Viterbi School of Engineering is home to the USC-Lockheed Martin Quantum Computing Center (QCC), a super-cooled, magnetically shielded facility specially built to house the first commercially available quantum computing processors - devices so advanced that there are only two in use outside the Canadian lab where they were built: The first one went to USC and Lockheed Martin, and the second to NASA and Google.

Since USC's facility opened in October 2011, a key task for researchers has been to determine whether D-Wave processors operate as hoped - using the special laws of quantum mechanics to offer potentially higher-speed processing, instead of operating in a classical, traditional way.

An international collaboration of scientists has now published several papers rejecting classical models of the first-generation D-Wave One processor housed at USC, including one on an elaborate test of all 108 of the chip's functional quantum bits ("qubits").

The test demonstrates that the D-Wave One behaved in a way that agrees with a model called "quantum Monte Carlo," yet disagreed with two candidate classical models that could have described the processor in the absence of quantum effects.

"The challenge is that the tests we can perform on the USC-based D-Wave processor can't directly 'prove' that the D-Wave processor is quantum - we can only disprove candidate classical models one at a time," said QCC Director Prof. Daniel Lidar. "But so far we find that the D-Wave processor is always consistent with our quantum models. Our tests continually get more rigorous and complex."

Add this to recent work involving USC Information Sciences Institute researcher Federico Spedalieri demonstrating entanglement in a chip at the company's headquarters in Burnaby BC as well as previous testing of a smaller group of qubits by Spedalieri, Lidar and their collaborators, and the evidence is mounting that quantum effects are at play in the D-Wave processors.

Quantum processors encode data in qubits, which have the capability of representing the two digits of one and zero at the same time - as opposed to traditional bits, which can encode distinctly either a one or a zero.

This property, called superposition, along with the ability of quantum states to "interfere" (cancel or reinforce each other like waves in a pond) and "tunnel" through energy barriers, is what may one day allow quantum processors ultimately perform optimization calculations much faster than traditional processors.

Optimization problems can take many forms, and quantum processors have been theorized to be useful for a variety of big data problems like stock portfolio optimization, image recognition and classification, and detecting anomalies, such as rooting out bugs in complex software.

The first quantum chip housed at the QCC was a 128-qubit D-Wave One, which was replaced about a year ago with the 512-qubit D-Wave Two. Though every chip is unique, the repeated validation of the older chip bodes well for its successor, which shares the same architecture.

"Our work is part of a large scale effort by the research community aimed at validating the potential of quantum information processing, which we all hope might one day surpass its classical counterparts," Lidar said.

The research was published by Nature Physics.

.


Related Links
University of Southern California
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Rough surface could keep small electronic parts from sticking together
Washington DC (SPX) Mar 10, 2014
When a piece of gift-wrapping tape sticks to itself, it's frustrating, but when small parts in a microgear or micromotor stick together, an electronic device may not work well, if at all. Scientists now report in the journal ACS Applied Materials and Interfaces that rough zinc oxide coatings can prevent tiny silicon parts from adhering to each other. The study could accelerate the developm ... read more


CHIP TECH
South Africa's nano-satellite encounters space debris

First step towards programmable materials

Australia to prevent 'Gravity' space crash with lasers

Aerojet Rocketdyne Provides Propulsion For GPM Satellite

CHIP TECH
Raytheon receives contract modification on JPSS Common Ground System

ASC Signal Completes First Phase of Horizon Teleports Installation and Receives Additional Antenna Order

Soldier's Network Update: US Army Capability Set 14 to Include AN/PRC-155 Manpack Tactical Radios

New Wireless Tagging And Tracking Capability For Managing Sensitive Assets

CHIP TECH
Payload prep continues for Arianespace Soyuz for Sentinel-1A

Russia to Start Building New Manned Rocket Launch Pad in 2015

New Vostochny space center a key priority for Russian Far East

'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

CHIP TECH
McMurdo Announces Global Availability of Maritime Fleet Management Software

Fifth Boeing GPS IIF Spacecraft Sends Initial Signals from Space

Russia to deploy up to 7 Glonass ground stations outside of national territory in 2014

Northrop Grumman Awarded U.S. Military Contract for Navigation Systems

CHIP TECH
Singapore to buy Airbus refuelling tankers for air force

Boeing Maritime Surveillance Aircraft Demonstrator Completes First Flight

Raytheon and PASSUR to provide improved airspace and airport efficiency

Improvement in polymers for aviation

CHIP TECH
Lockheed Martin, University of Maryland to Develop Next Gen Quantum Computer

Rough surface could keep small electronic parts from sticking together

Electronics based on a 2-D electron gas

Taiwan's TSMC making chips for new iPhone: report

CHIP TECH
China 'deploys satellites' in search for Malaysia plane

Satellite Sees Winter Storm March Over Mid-Atlantic

NASA-JAXA Launch Mission to Measure Global Rain, Snow

NASA Building Four Spacecraft to Study Magnetic Reconnection

CHIP TECH
Maize Plus Bacteria: One-Two Punch Knocks Copper Out of Stamp Sand

Greeks protest against Syria chemical weapon destruction at sea

China promises cleaner air, steady 7.5 percent growth

Reforms slow in Bangladesh's toxic tanneries




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.