Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Artificial Cells Act Like the Real Thing
by Staff Writers
Rehovot, Israel (SPX) Aug 21, 2014


Eyal Karzbrun, Alexandra Tayar and Prof. Roy Bar-Ziv.

Imitation, they say, is the sincerest form of flattery, but mimicking the intricate networks and dynamic interactions that are inherent to living cells is difficult to achieve outside the cell. Now, as published in Science, Weizmann Institute scientists have created an artificial, network-like cell system that is capable of reproducing the dynamic behavior of protein synthesis.

This achievement is not only likely to help gain a deeper understanding of basic biological processes, but it may, in the future, pave the way toward controlling the synthesis of both naturally-occurring and synthetic proteins for a host of uses.

The system, designed by PhD students Eyal Karzbrun and Alexandra Tayar in the lab of Prof. Roy Bar-Ziv of the Weizmann Institute's Materials and Interfaces Department, in collaboration with Prof. Vincent Noireaux of the University of Minnesota, comprises multiple compartments "etched'' onto a biochip.

These compartments - artificial cells, each a mere millionth of a meter in depth - are connected via thin capillary tubes, creating a network that allows the diffusion of biological substances throughout the system. Within each compartment, the researchers insert a cell genome - strands of DNA designed and controlled by the scientists themselves.

In order to translate the genes into proteins, the scientists relinquished control to the bacterium E. coli: Filling the compartments with E. coli cell extract - a solution containing the entire bacterial protein-translating machinery, minus its DNA code - the scientists were able to sit back and observe the protein synthesis dynamics that emerged.

By coding two regulatory genes into the sequence, the scientists created a protein synthesis rate that was periodic, spontaneously switching from periods of being "on" to "off." The amount of time each period lasted was determined by the geometry of the compartments.

Such periodic behavior - a primitive version of cell cycle events - emerged in the system because the synthesized proteins could diffuse out of the compartment through the capillaries, mimicking natural protein turnover behavior in living cells. At the same time fresh nutrients were continuously replenished, diffusing into the compartment and enabling the protein synthesis reaction to continue indefinitely.

"The artificial cell system, in which we can control the genetic content and protein dilution times, allows us to study the relation between gene network design and the emerging protein dynamics. This is quite difficult to do in a living system," says Karzbrun.

"The two-gene pattern we designed is a simple example of a cell network, but after proving the concept, we can now move forward to more complicated gene networks. One goal is to eventually design DNA content similar to a real genome that can be placed in the compartments."

The scientists then asked whether the artificial cells actually communicate and interact with one another like real cells. Indeed, they found that the synthesized proteins that diffused through the array of interconnected compartments were able to regulate genes and produce new proteins in compartments farther along the network.

In fact, this system resembles the initial stages of morphogenesis - the biological process that governs the emergence of the body plan in embryonic development.

"We observed that when we place a gene in a compartment at the edge of the array, it creates a diminishing protein concentration gradient; other compartments within the array can sense and respond to this gradient - similar to how morphogen concentration gradients diffuse through the cells and tissues of an embryo during early development.

"We are now working to expand the system and to introduce gene networks that will mimic pattern formation, such as the striped patterns that appear during fly embryogenesis," explains Tayar.

With the artificial cell system, according to Bar-Ziv, one can, in principle, encode anything: "Genes are like Lego in which you can mix and match various components to produce different outcomes; you can take a regulatory element from E. coli that naturally controls gene X, and produce a known protein; or you can take the same regulatory element but connect it to gene Y instead to get different functions that do not naturally occur in nature."

This research may, in the future, help advance the synthesis of such things as fuel, pharmaceuticals, chemicals and the production of enzymes for industrial use, to name a few.

.


Related Links
Weizmann Institute of Science
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Pitt engineer turns metal into glass
Pittsburgh PA (SPX) Aug 21, 2014
Materials scientists have long sought to form glass from pure, monoatomic metals. Scott X. Mao and colleagues did it. Their paper, "Formation of Monoatomic Metallic Glasses Through Ultrafast Liquid Quenching," was recently published online in Nature, a leading science journal. Mao, William, Kepler Whiteford Professor of Mechanical Engineering and Materials Science at the University of Pitt ... read more


TECH SPACE
Russia Considers Meteor Impact Prevention Project

Russia to develop scavenger to collect cosmic debris by 2025

Artificial Cells Act Like the Real Thing

Singapore launches world's first ZigBee inter-satellite comms system

TECH SPACE
General Hyten takes control of AFSPC

Harris' tactical manpack radio gets NSA certification

Saudis seek to upgrade AWAC planes

ADS will bid for USAF order for commercial satellite bandwidth

TECH SPACE
Sea Launch Takes Proactive Steps to Address Manifest Gap

SpaceX rocket explodes during test flight

Russian Cosmonauts Carry Out Science-Oriented Spacewalk Outside ISS

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

TECH SPACE
Experts probe launch failure for EU's satnav project

Australia approves GPS project

Galileo navigation satellites lose their way in space

Arianespace serves the Galileo constellation

TECH SPACE
Japan mulls building its own fighter jets: report

CAE demonstrates interoperability of its C-130J trainers

New Zealand receives first Beechcraft trainers

Engineers and Technicians Install Protective Shell on NASA's Orion Spacecraft

TECH SPACE
Ferroelectric Materials Suffer Unexpected Electric Polarizations

Electrical engineers take major step toward photonic circuits

'Cavity protection effect' helps to conserve quantum information

Could hemp nanosheets topple graphene for making the ideal supercapacitor?

TECH SPACE
NASA Rainfall Satellite Out Of Fuel, but Continues to Provide Data

NASA Picks Top Earth Data Challenge Ideas, Opens Call for Climate Apps

Analyzing Snowfall Data for GPM

NMR Using Earth's Magnetic Field

TECH SPACE
Trash burning worldwide significantly worsens air pollution

Black carbon linked to cardiovascular health

Mexico closes 80 schools after chemical leak

Mexico acid leak leaves orange river, toxic water




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.