Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
A new route to dissipationless electronics
by Staff Writers
Tokyo, Japan (SPX) Aug 21, 2012


This is a depiction of the quantum Hall effect (left) and the quantum anomalous Hall effect (right). Credit: RIKEN.

A team of researchers at RIKEN and the University of Tokyo has demonstrated a new material that promises to eliminate loss in electrical power transmission. The surprise is that their methodology for solving this classic energy problem is based upon the first realization of a highly exotic type of magnetic semiconductor first theorized less than a decade ago - a magnetic topological insulator.

Development of energy saving technologies is one of the central pursuits of modern science. From advancing alternative energy resources like wind and solar power to improving the infrastructure of the electrical power grid, this pursuit by scientists and engineers takes on a variety of forms.

One focus in recent years has been eliminating energy loss in the transmission of power itself, which by some estimates consumes more than 10% of all energy being produced. The research team has demonstrated a new material - a magnetic topological insulator - that can eliminate this loss.

The work by the RIKEN/UT collaboration is closely related at a landmark discovery from the 1980s, the so-called quantum Hall effect. That effect is known to produce dissipationless electricity channels, but it requires large, cumbersome magnets to produce fields 100,000 larger than the earth's magnetic field for its operation.

The RIKEN/UT collaboration circumvented this difficulty by using an exotic type of semiconductor predicted to exhibit a similar effect. In contrast to the quantum Hall effect, this effect, known as the quantum anomalous Hall effect, stems from the semiconductor's own magnetization rather than from an external one.

At the heart of this new phenomenon is the interaction between magnetic ions and the topological insulator's current carrying particles (known as Dirac fermions), the latter of which are unique because they behave as if they have zero mass.

The devices produced by the RIKEN/UT team are a robust "proof of principle", demonstrating that this new type of dissipationless transport can be harnessed in prototype transistors. While currently requiring cryogenic conditions, improvements in materials design promises to improve the stability of the magnets, making it possible to operate them at higher temperatures.

By doing away with external stimuli such as magnetic fields and, in the future, cryogenic cooling, these new magnetic topological insulators may represent the most efficient path to modernizing the power grid by eliminating loss in energy transfer.

Original publication: J. G. Checkelsky, J. T. Te, Y. Onose, Y. Iwasa, Y. Tokura. "Dirac-fermion-mediated ferromagnetism in a topological insulator." Nature Physics, 2012, DOI: 10.1038/nphys2388

.


Related Links
RIKEN
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Electronic Read-out of Quantum B
Karlsruhe, Germany (SPX) Aug 21, 2012
Quantum computers promise to reach computation speeds far beyond that of today's computers. As they would use quantum effects, however, they would also be susceptible to external interferences. Information flow into and out of the system is a critical point. Researchers from KIT with partners from Grenoble and Strasbourg have now read out the quantum state of an atom directly by using elec ... read more


CHIP TECH
Hewlett-Packard books $8.9 bn loss

Apple-Samsung smartphone clash heads to jury

China slightly increases export quota for rare earths

Information overload in the era of 'big data'

CHIP TECH
Raytheon unveils cross domain strategy to securely access information via mobile devices

NATO Special Forces Taps Mutualink for Global Cross Coalition Communications

Northrop Grumman Demonstrates Integrated Receiver Circuit Under DARPA Program

Boeing Receives 10th WGS Satellite Order from USAF

CHIP TECH
ASTRA 2F touches down in French Guiana for Arianespace's next Ariane 5 dual-passenger mission

Satellite preparations move into full swing for the next Arianespace Soyuz mission from French Guiana

Russian Booster Rocket Lifts US Satellite in Seaborne Launch

India's GSAT-10 satellite continues its checkout for the upcoming Arianespace Ariane 5 mission

CHIP TECH
A GPS in Your DNA

Next Galileo satellite reaches French Guiana launch site

Raytheon completes GPS OCX iteration 1.4 Critical Design Review

Mission accomplished, GIOVE-B heads into deserved retirement

CHIP TECH
Swiss fighter jet purchase to go ahead despite criticism

Taiwan's China Airlines boosts Auckland flights

Xiamen Airlines in talks to buy 30 Boeing 737 MAXs

Taiwan denies it still seeks F-16C-D jets

CHIP TECH
A new route to dissipationless electronics

Electronic Read-out of Quantum B

IBM buys flash memory firm

NIST's speedy ions could add zip to quantum computers

CHIP TECH
Vecmap tracks the Asian bush mosquito

NASA Selects Combined Data Services Contract For Polar Satellites

Proba-1 microsat snaps Olympic neighbourhood

Sparse microwave imaging: A new concept in microwave imaging technology

CHIP TECH
Earthworms soak up heavy metal

Italians protest against pollution from steelworks

Vietnam, US begin historic Agent Orange cleanup

Worldwide increase of air pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement