Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Unique chemistry in hydrogen catalysts
by Staff Writers
Davis CA (SPX) Oct 29, 2013


This hydrogen-generating cluster of iron (brown) and sulfur (yellow) atoms, with side groups of carbon monoxide (gray/red) and cyanide (gray/blue), could be a key to future fuel sources. Protein Data Bank.

Making hydrogen easily and cheaply is a dream goal for clean, sustainable energy. Bacteria have been doing exactly that for billions of years, and now chemists at the University of California, Davis, and Stanford University are revealing how they do it, and perhaps opening ways to imitate them.

A study published Oct. 25 in the journal Science describes a key step in assembling the hydrogen-generating catalyst.

"It's pretty interesting that bacteria can do this," said David Britt, professor of chemistry at UC Davis and co-author on the paper. "We want to know how nature builds these catalysts - from a chemist's perspective, these are really strange things."

The bacterial catalysts are based on precisely organized clusters of iron and sulfur atoms, with side groups of cyanide and carbon monoxide. Those molecules are highly toxic unless properly controlled, Britt noted.

The cyanide and carbon monoxide groups were known to come from the amino acid tyrosine, Britt said. Jon Kuchenreuther, a postdoctoral researcher in Britt's laboratory, used a technique called electron paramagnetic resonance to study the structure of the intermediate steps.

They found a series of chemical reactions involving a type of highly reactive enzyme called a radical SAM enzyme. The tyrosine is attached to a cluster of four iron atoms and four sulfur atoms, then cut loose leaving the cyanide and carbon monoxide groups behind.

"People think of radicals as dangerous, but this enzyme directs the radical chemistry, along with the production of normally poisonous CO and CN, along safe and productive pathways," Britt said.

Kuchenreuther, Britt and colleagues also used another technique, Fourier Transform Infrared to study how the iron-cyanide-carbon monoxide complex is formed. That work will be published separately.

"Together, these results show how to make this interesting two-cluster enzyme," Britt said. "This is unique, new chemistry."

Britt's laboratory houses the California Electron Paramagnetic Resonance center (CalEPR), the largest center of its kind on the west coast. Other authors on the paper are: at UC Davis, postdoctoral researchers William Myers and Troy Stich, project scientist Simon George and graduate student Yaser NejatyJahromy; and at Stanford University, James Swartz, professor of chemical engineering and bioengineering. The work was supported by grants from the U.S. Department of Energy.

.


Related Links
University of California - Davis
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Birthing a new breed of materials
Long Beach, CA (SPX) Oct 28, 2013
Where two different materials meet on the atomic level, a new material can be born that is neither one nor the other. The two parent materials do not mix - they remain distinct from one another - but their marriage begets a strange child with properties unlike those of either parent. These so-called interfacial materials are considered to be a breed of materials in their own right, and, th ... read more


TECH SPACE
Historic Demonstration Proves Laser Communication Possible

UNC neuroscientists discover new 'mini-neural computer' in the brain

Birthing a new breed of materials

Unique chemistry in hydrogen catalysts

TECH SPACE
Latest AEHF Comms Payload Gets Boost From Customized Integrated Circuits

Northrop Grumman Cobham Intercoms Receives First Order For AN VIC-5 Enhanced Vehicular Comms

Raytheon produces new US Army satellite communications terminals ahead of schedule

Lockheed Martin To Continue In Theater Support for Real-Time Surveillance

TECH SPACE
ILS Proton Launches Sirius FM-6 Satellite

Boeing Finalizes Agreement for Kennedy Space Center Facility

Russia Plans to Spend $22M on Soyuz-2 Launch Pad

Ariane 5 arrives at the Spaceport's Final Assembly Building for payload installation

TECH SPACE
Russia, US to protect satellite navigation systems at UN level

Russia Retires Faulty Glonass-M Satellite

Raytheon demonstrates first Direct Geo-Positioning Metric Sensor

Britain considering car-tracking 'bullet' technology

TECH SPACE
New Climate-studying Imager Makes First Balloon Flight

Raytheon's Joint Standoff Weapon C-1 demonstrates networked capability with E-2D aircraft

US military's airship programs lose altitude

Boeing, Lockheed team up for new US Air Force bomber

TECH SPACE
JQI team 'gets the edge' on photon transport in silicon

Atomically Thin Device Promises New Class of Electronics

Tiny Sensors Put the Squeeze on Light

Quantum conductors benefit from growth on smooth foundations

TECH SPACE
Astrium delivers microwave radiometer for the Sentinel-3A satellite

Time is ripe for fire detection satellite

Canadian Satellite SCISAT Celebrating 10 Years Of Scientific Measurements

Developing Next Generation K-12 Science Standards

TECH SPACE
UCSB researcher documents the enduring contaminant legacy of the California gold rush

New low-cost, nondestructive technology cuts risk from mercury hot spots

Pollution debated in Canada's oil fields

Mustard gas traces found close to Poland's Baltic Sea coast




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement