Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
UNC neuroscientists discover new 'mini-neural computer' in the brain
by Staff Writers
Chapel Hill NC (SPX) Oct 31, 2013


This is a dendrite, the branch-like structure of a single neuron in the brain. The bright object from the top is a pipette attached to a dendrite in the brain of a mouse. The pipette allows researchers to measure electrical activity, such as a dendritic spike, the bright spot in the middle of the image. Credit: Courtesy of Spencer Smith.

Dendrites, the branch-like projections of neurons, were once thought to be passive wiring in the brain. But now researchers at the University of North Carolina at Chapel Hill have shown that these dendrites do more than relay information from one neuron to the next. They actively process information, multiplying the brain's computing power.

"Suddenly, it's as if the processing power of the brain is much greater than we had originally thought," said Spencer Smith, PhD, an assistant professor in the UNC School of Medicine.

His team's findings, published in the journal Nature, could change the way scientists think about long-standing scientific models of how neural circuitry functions in the brain, while also helping researchers better understand neurological disorders.

"Imagine you're reverse engineering a piece of alien technology, and what you thought was simple wiring turns out to be transistors that compute information," Smith said. "That's what this finding is like. The implications are exciting to think about."

Axons are where neurons conventionally generate electrical spikes, but many of the same molecules that support axonal spikes are also present in the dendrites. Previous research using dissected brain tissue had demonstrated that dendrites can use those molecules to generate electrical spikes themselves, but it was unclear whether normal brain activity involved those dendritic spikes. For example, could dendritic spikes be involved in how we see?

The answer, Smith's team found, is yes. Dendrites effectively act as mini-neural computers, actively processing neuronal input signals themselves.

Directly demonstrating this required a series of intricate experiments that took years and spanned two continents, beginning in senior author Michael Hausser's lab at University College London, and being completed after Smith and Ikuko Smith, PhD, DVM, set up their own lab at the University of North Carolina. They used patch-clamp electrophysiology to attach a microscopic glass pipette electrode, filled with a physiological solution, to a neuronal dendrite in the brain of a mouse. The idea was to directly "listen" in on the electrical signaling process.

"Attaching the pipette to a dendrite is tremendously technically challenging," Smith said. "You can't approach the dendrite from any direction. And you can't see the dendrite. So you have to do this blind. It's like fishing if all you can see is the electrical trace of a fish." And you can't use bait. "You just go for it and see if you can hit a dendrite," he said. "Most of the time you can't."

But Smith built his own two-photon microscope system to make things easier.

Once the pipette was attached to a dendrite, Smith's team took electrical recordings from individual dendrites within the brains of anesthetized and awake mice. As the mice viewed visual stimuli on a computer screen, the researchers saw an unusual pattern of electrical signals - bursts of spikes - in the dendrite.

Smith's team then found that the dendritic spikes occurred selectively, depending on the visual stimulus, indicating that the dendrites processed information about what the animal was seeing.

To provide visual evidence of their finding, Smith's team filled neurons with calcium dye, which provided an optical readout of spiking. This revealed that dendrites fired spikes while other parts of the neuron did not, meaning that the spikes were the result of local processing within the dendrites.

Study co-author Tiago Branco, PhD, created a biophysical, mathematical model of neurons and found that known mechanisms could support the dendritic spiking recorded electrically, further validating the interpretation of the data.

"All the data pointed to the same conclusion," Smith said. "The dendrites are not passive integrators of sensory-driven input; they seem to be a computational unit as well."

His team plans to explore what this newly discovered dendritic role may play in brain circuitry and particularly in conditions like Timothy syndrome, in which the integration of dendritic signals may go awry.

Study co-authors were Ikuko Smith, PhD, DVM, Tiago Branco, PhD, and Michael Hausser, PhD. This work was supported by a Long-Term Fellowship and a Career Development Award from the Human Frontier Science Program, and a Klingenstein Fellowship to S. Smith, a Helen Lyng White Fellowship to I. Smith, a Wellcome Trust and Royal Society Fellowship, and Medical Research Council (UK) support to T. Branco, and grants from the Wellcome Trust, the European Research Council, and Gatsby Charitable Foundation to M. Hausser.

.


Related Links
University of North Carolina Health Care
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New material for quantum computing discovered out of the blue
London, UK (SPX) Oct 28, 2013
A common blue pigment used in the 5 Pound note could have an important role to play in the development of a quantum computer, according to a paper published today in the journal Nature. The pigment, copper phthalocyanine (CuPc), which is similar to the light harvesting section of the chlorophyll molecule, is a low-cost organic semiconductor that is found in many household products. Cruci ... read more


TECH SPACE
Historic Demonstration Proves Laser Communication Possible

UNC neuroscientists discover new 'mini-neural computer' in the brain

Birthing a new breed of materials

Unique chemistry in hydrogen catalysts

TECH SPACE
Latest AEHF Comms Payload Gets Boost From Customized Integrated Circuits

Northrop Grumman Cobham Intercoms Receives First Order For AN VIC-5 Enhanced Vehicular Comms

Raytheon produces new US Army satellite communications terminals ahead of schedule

Lockheed Martin To Continue In Theater Support for Real-Time Surveillance

TECH SPACE
ILS Proton Launches Sirius FM-6 Satellite

Boeing Finalizes Agreement for Kennedy Space Center Facility

Russia Plans to Spend $22M on Soyuz-2 Launch Pad

Ariane 5 arrives at the Spaceport's Final Assembly Building for payload installation

TECH SPACE
Russia, US to protect satellite navigation systems at UN level

Russia Retires Faulty Glonass-M Satellite

Raytheon demonstrates first Direct Geo-Positioning Metric Sensor

Britain considering car-tracking 'bullet' technology

TECH SPACE
New Climate-studying Imager Makes First Balloon Flight

Raytheon's Joint Standoff Weapon C-1 demonstrates networked capability with E-2D aircraft

US military's airship programs lose altitude

Boeing, Lockheed team up for new US Air Force bomber

TECH SPACE
JQI team 'gets the edge' on photon transport in silicon

Atomically Thin Device Promises New Class of Electronics

Tiny Sensors Put the Squeeze on Light

Quantum conductors benefit from growth on smooth foundations

TECH SPACE
Astrium delivers microwave radiometer for the Sentinel-3A satellite

Time is ripe for fire detection satellite

Canadian Satellite SCISAT Celebrating 10 Years Of Scientific Measurements

Developing Next Generation K-12 Science Standards

TECH SPACE
UCSB researcher documents the enduring contaminant legacy of the California gold rush

New low-cost, nondestructive technology cuts risk from mercury hot spots

Pollution debated in Canada's oil fields

Mustard gas traces found close to Poland's Baltic Sea coast




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement