Space Industry and Business News  
Tough Tubes: Carbon Nanotubes Endure Heavy Wear And Tear

Pushparaj and his team created a free-standing, macroscopic, two-millimeter square block of carbon nanotubes, made up of millions of individual, vertically aligned, multiwalled nanotubes. The researchers then compressed the block between two steels plates in a vice-like machine. The team repeated this process more than 500,000 times, recording precisely how much force was required to compress the nanotube block down to about 25 percent of its original height. Even after 500,000 compressions, the nanotube block retained its original shape and mechanical properties. Similarly, the nanotube block also retained its original electrical conductance.
by Staff Writers
Troy NY (SPX) Jul 16, 2007
The ability of carbon nanotubes to withstand repeated stress yet retain their structural and mechanical integrity is similar to the behavior of soft tissue, according to a new study from Rensselaer Polytechnic Institute. When paired with the strong electrical conductivity of carbon nanotubes, this ability to endure wear and tear, or fatigue, suggests the materials could be used to create structures that mimic artificial muscles or interesting electro-mechanical systems, researchers said.

The report, "Fatigue resistance of aligned carbon nanotube arrays under cyclic compression," appears in the July issue of Nature Nanotechnology. Despite extensive research over the past decade into the mechanical properties of carbon nanotube structures, this study is the first to explore and document their fatigue behavior, said co-author Victor Pushparaj, a senior research specialist in Rensselaer's department of materials science and engineering.

"The idea was to show how fatigue affects nanotube structures over the lifetime of a device that incorporates carbon nanotubes," Pushparaj said. "Even when exposed to high levels of stress, the nanotubes held up extremely well. The behavior is reminiscent of the mechanics of soft tissues, such as a shoulder muscle or stomach wall, which expand and contract millions of times over a human lifetime."

Pushparaj and his team created a free-standing, macroscopic, two-millimeter square block of carbon nanotubes, made up of millions of individual, vertically aligned, multiwalled nanotubes. The researchers then compressed the block between two steels plates in a vice-like machine.

The team repeated this process more than 500,000 times, recording precisely how much force was required to compress the nanotube block down to about 25 percent of its original height.

Even after 500,000 compressions, the nanotube block retained its original shape and mechanical properties. Similarly, the nanotube block also retained its original electrical conductance.

In the initial stages of the experiment, the force needed to compress the nanotube block decreased slightly, but soon stabilized to a constant value, said Jonghwan Suhr, an assistant professor of mechanical engineering at the University of Nevada in Reno, who received his doctorate from Rensselaer in 2005, and with Pushparaj contributed equally to this report.

As the researchers continued to compress the block, the individual nanotube arrays collectively and gradually adjusted to getting squeezed, showing very little fatigue. This "shape memory," or viscoelastic-like behavior (although the individual nanotubes are not themselves viscoelastic), is often observed in soft-tissue materials.

While more promising than polymers and other engineered materials that exhibit shape memory, carbon nanotubes by themselves do not perform well enough to be used as a synthetic biomaterial. But Pushparaj and his fellow researchers are combining carbon nanotubes with different polymers to create a material they anticipate will perform as well as soft tissue. The team is also using results from this study to develop mechanically compliant electrical probes and interconnects.

In addition to Pushparaj and Suhr, other contributing authors of the paper include Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer; Omkaram Nalamasu, professor of chemistry and materials science and engineering at Rensselaer; Lijie Ci, Rensselaer research associate; Subbalakshmi Sreekala, a research associate in the department of mechanical and aerospace engineering at Princeton University; and X. Zhang, research associate in the school of materials science and engineering at Shanghai Jiao Tong University.

Related Links
Rensselaer Polytechnic Institute
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Tomorrow's Green Nanofactories
Washington DC (SPX) Jul 13, 2007
Viruses are notorious villains. They cause serious human diseases like AIDS, polio, and influenza, and can lead to system crashes and data loss in computers. A new podcast explores how nanotechnology researcher Angela Belcher, from Massachusetts Institute of Technology (MIT), is working with viruses to make them do good things. By exploiting a virus's ability to replicate rapidly and combine with semiconductor and electronic materials, she is coaxing them to grow and self-assemble nanomaterials into a functional electronic device.







  • Vizada Launches SkyFile Access For Better Mobile Satellite Data Transfer
  • Bringing Mobile Cellular Phones To The Skyways
  • Rockwell Collins And ARINC Sign Agreement For Broadband Offering
  • Academic Group Releases Plan To Share Power Over Internet Root Zone Keys

  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Sea Launch To Resume Zenit Launches In October
  • Russia Proton-M Booster Puts US Satellite Into Orbit

  • Boeing Awarded Two Billion Dollar A-10 Wing Contract
  • Raytheon Awarded Rolling Airframe Missile Contracts Valued At Nearly 146 Million Dollars
  • Europe Bans All Indonesian Airlines From EU Airspace
  • France Supports Cap On Airline Carbon Emissions

  • A-10s Get Digital Makeover
  • TSAT Team Demonstrates Technology Maturity Of Laser Communications Subsystem
  • Boeing Showcases Operational TSAT System During Critical Review
  • Lockheed Martin Shifts Into Production Phase Of Navy Narrowband Tactical Satellite

  • DuPont And NASA To Develop Kevlar Reinforced Insulation For Next Gen Space Vehicles
  • NASA Harnesses Power Of Virtual Worlds For Exploration And Outreach
  • Stardust And Deep Impact Get New Assignments Cruising About Sol
  • Warner Goes Digital To Bring New Life To Films

  • Hall Appoints Feeney To Top GOP Position On Space And Aeronautics Subcommittee
  • Dodgen Joins Northrop Grumman As Vice President Of Strategy For Missile Systems Business
  • Townsend To Lead Ball Aerospace Exploration Systems In Huntsville
  • NASA Nobel Prize Recipient To Lead Chief Scientist Office

  • GOP House Science Committee To Evaluate NASA Earth Science Budget
  • Subcommittee Continues Look At Status of NASA Earth Science Programs
  • QuikSCAT Marks Eight Years On-Orbit Watching Planet Earth
  • Ukraine To Launch Earth Observation Satellite In 2008

  • Pseudo-Satellites Allow Accurate Navigation In Helsinki Harbour
  • Cooperation Agreement For Satellite Navigation In Africa
  • ESA Launches New Program For Air Traffic Management Via Satellite
  • GPS Wing At LA Air Force Base Changes Command

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement