Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
The future face of molecular electronics
by Staff Writers
Washington DC (SPX) Sep 17, 2014


Zigzag picene is more intact than straight pentacene on silver. Image courtesy Y. Hasegawa/ISSP, U. Tokyo.

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, individual molecules would take on the roles currently played by comparatively-bulky wires, resistors and transistors.

A team of researchers from five Japanese and Taiwanese universities has identified a potential candidate for use in small-scale electronics: a molecule called picene. In a paper published September 16 in The Journal of Chemical Physics, from AIP Publishing, they characterize the structural and electronic properties of a thin layer of picene on a silver surface, demonstrating the molecule's potential for electronic applications.

Picene's sister molecule, pentacene, has been widely studied because of its high carrier mobility-its ability to quickly transmit electrons, a critical property for nanoscale electronics. But pentacene, made of five benzene molecules joined in a line, breaks down under normal environmental conditions.

Enter picene, in which these same five benzene rings are instead bonded together in a W shape. This simple structural change alters some of the molecule's other properties: Picene retains pentacene's high carrier mobility, but is more chemically stable and therefore better suited to practical applications.

To test picene's properties when juxtaposed with a metal, as it would be in an electronic device, the researchers deposited a single layer of picene molecules onto a piece of silver. Then, they used scanning tunneling microscopy, an imaging technique that can visualize surfaces at the atomic level, to closely examine the interface between the picene and the silver.

Though previous studies had shown a strong interaction between pentacene and metal surfaces, "we found that the zigzag-shaped picene basically just sits on the silver," said University of Tokyo researcher Yukio Hasegawa. Interactions between molecules can alter their shape and therefore their behavior, but picene's weak connection to the silver surface left its properties intact.

"The weak interaction is advantageous for molecular [electronics] applications because the modification of the properties of molecular thin film by the presence of the [silver] is negligible and therefore [the] original properties of the molecule can be preserved very close to the interface," said Hasegawa.

A successful circuit requires a strong connection between the electronic components-if a wire is frayed, electrons can't flow. According to Hasegawa, picene's weak interactions with the silver allow it to deposit directly on the surface without a stabilizing layer of molecules between, a quality he said is "essential for achieving high-quality contact with metal electrodes."

Because picene displays its high carrier mobility when exposed to oxygen, the researchers hope to investigate its properties under varying levels of oxygen exposure in order to elucidate a molecular mechanism behind the behavior.

"Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)," is authored by Yasuo Yoshida, Hung-Hsiang Yang, Hsu-Sheng Huang, Shu-You Guan, Susumu Yanagisawa, Takuya Yokosuka, Minn-Tsong Lin, Wei-Bin Su, Chia-Seng Chang, Germar Hoffmann, and Yukio Hasegawa. It will be published in The Journal of Chemical Physics on September 16, 2014 (DOI: 10.1063/1.4894439).

.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
New species of electrons can lead to better computing
Manchester, UK (SPX) Sep 15, 2014
In a research paper published this week in Science, the collaboration led by MIT's theory professor Leonid Levitov and Manchester's Nobel laureate Sir Andre Geim report a material in which electrons move at a controllable angle to applied fields, similar to sailboats driven diagonally to the wind. The material is graphene - one atom-thick chicken wire made from carbon - but with a differen ... read more


CHIP TECH
Scientists come closer to the industrial synthesis of a material harder than diamond

Larry Ellison releases helm of mighty Oracle ship

Mussel-inspired MIT glue may have naval, medical applications

'Priceless' 600-tonne jade deposit found in China

CHIP TECH
Space control Airmen ensure constant communication

Russian Aerospace Defense Forces Again Dismiss Satellite Explosion Rumors

Harris Corporation supplying radios to Air Force Special Operations Command

Harris Corporation supply Falcon III RF-340M radios to U.S. military

CHIP TECH
SpaceX is not only taking a 3D printer to space, but mice too

United Launch Alliance Launches Its 60th Mission from Cape Canaveral

Lockheed Martin-built CLIO Satellite Launched From Cape Canaveral

SpaceX cargo capsule nears International Space Station

CHIP TECH
Russia Unable To Reject Foreign Parts in GLONASS Satellites

Talks Over GLONASS Station Locations in US on Hold

Sam Houston State study examines use of GIS in policing

Western Sanctions Fail to Impede GLONASS Satellite Production

CHIP TECH
USMC system for aircraft battle management to be maintained by Lockheed

Japan wants its own early-warning planes: report

Upgrade for F-35's Autonomic Logistics Information System

Upgraded Brazilian Army helo passes evaluation

CHIP TECH
For electronics beyond silicon, a new contender emerges

The future face of molecular electronics

Method detects prize particle for future quantum computing

Program Grows Lasers Directly on Silicon-Based Microchips

CHIP TECH
Dry Conditions and Lightning Strikes Make for a Long California Fire Season

NASA Airborne Campaigns Focus on Climate Impacts in the Arctic

Severe flooding in Northern Pakistan photographed by NASA

EIAST announces Remote Sensing Applications Competition 2014

CHIP TECH
NJIT researchers working to safeguard the shoreline

Mexican authorities say mine still leaking acid

Auf Wiedersehen to plastic at Berlin's no-packaging store

New toxic spill traced to Mexico mine




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.