|
. | . |
|
by Staff Writers Munich, Germany (SPX) Aug 29, 2014
A team of researchers led by Professor Heinz Langhals of LMU's Department of Chemistry has taken a significant step which promises to markedly expedite the recycling of plastic waste. They have developed a technique which provides for automated recognition of their polymer constituents, thus improving the efficiency of recycling and re-use of the various types of plastic. The technique takes advantage of the polymer-specific nature of the intrinsic fluorescence induced by photoexcitation. "Plastics emit fluorescent light when exposed to a brief flash of light, and the emission decays with time in a distinctive pattern. Thus, their fluorescence lifetimes are highly characteristic for the different types of polymers, and can serve as an identifying fingerprint," Langhals explains. Details of the new method appear in the latest issue of the journal "Green and Sustainable Chemistry". The new technique, which is the subject of a patent application, involves exposing particles of plastic to a brief flash of light which causes the material to fluoresce. Photoelectric sensors then measure the intensity of the light emitted in response to the inducing photoexcitation to determine the dynamics of its decay. Because the different polymer materials used in the manufacture of plastics display specific fluorescence lifetimes, the form of the decay curve can be used to identify their chemical nature. "With this process, errors in measurement are practically ruled out; for any given material, one will always obtain the same value for the fluorescence half-life, just as in the case of radioactive decay," says Langhals.
Turning bottles into windcheaters "Polymers represent an interesting basis for the sustainable cycling of technological materials. The crucial requirement is that the recycled material should be chemically pure. In that case, bottles made of PET, for example, can be relatively easily turned into synthetic fiber for use in waterproof windcheaters," says Langhals. The vast majority of technical polymers are processed as thermoplastics, i.e., they are melted at high temperature and the finished article is produced by injecting the molten material into an appropriate mold, where it allowed to set. Reheating of recycled plastic can, however, lead to deleterious alterations in its properties of the material unless the sorted material is of high purity. Contamination levels as low as 5% are sufficient to significantly reduce the quality of the reformed product. The reason for this "down-cycling" effect is that, as a general rule, polymers tend to be immiscible, as they are chemically incompatible with one another. Remelting of polymer mixtures therefore often leads to partitioning of the different polymers into distinct domains separated by grain boundaries, which compromises the quality of the final product. For this reason, high-quality plastics are always manufactured exclusively from pristine precursors - never from recycled material. The new method developed by the LMU team could, however, change this. "The waste problem can only be solved by chemical means, and our process can make a significant contribution to environmental protection, because it makes automated sorting feasible," says Langhals. Indeed, the use of fluorescence lifetime measurements permits the identification and sorting of up to 1.5 tons of plastic per hour. In other words, the method in its present form already meets the specifications required for its application on an industrial scale.
Related Links LMU Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |