Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Study suggests second life for possible spintronic materials
by Staff Writers
Athens OH (SPX) Jun 07, 2013


This image shows a 3-D rendering of a stable manganese gallium nitride surface structure. Credit: A.R. Smith, Ohio University.

Ten years ago, scientists were convinced that a combination of manganese and gallium nitride could be a key material to create spintronics, the next generation of electronic devices that operate on properties found at the nanoscale. But researchers grew discouraged when experiments indicated that the two materials were as harmonious as oil and water.

A new study led by Ohio University physicists suggests that scientists should take another look at this materials duo, which once was heralded for its potential to be the building block for devices that can function at or above room temperature.

"We've found a way-at least on the surface of the material-of incorporating a uniform layer," said Arthur Smith, a professor of physics and astronomy at Ohio University who leads the international collaboration of Argentinian and Spanish researchers.

The scientists made two important changes to create the material merger, they report in the journal Physical Review B. First, they used the nitrogen polarity of gallium nitride, whereas conventional experiments used the gallium polarity to attach to the manganese, Smith explained. Second, they heated the sample.

At lower temperatures (less than 105 degrees Celsius), the manganese atoms "float" on the outer layer of gallium atoms. When the scientists raised the temperature about 100 degrees Celsius, Smith said, the atoms connected to the nitrogen layer underneath, creating a manganese-nitrogen bond. This bond remains stable, even at very high temperatures.

The theoretical scientists accurately predicted that a "triplet" structure of three manganese atoms would form a metastable structure at low temperatures, Smith said. But at higher temperatures, those manganese atoms break apart and bond with nitrogen. Valeria Ferrari of the Centro Atomico Constituyentes said her group performed quantum mechanical simulations to test which model structures have the lowest energy, which suggested both the trimer structure and the manganese-nitrogen bonded structure.

Now that scientists have shown that they can create a stable structure with these materials, they will investigate whether it has the magnetic properties at room temperature necessary to function as a spintronic material.

The study authors are Abhijit Chinchore, Kangkang Wang, Meng Shi, Andrada Mandru, Yinghao Liu, Muhammad Haider and Arthur Smith of the Nanoscale and Quantum Phenomena Institute at Ohio University; Valeria Ferrari and Maria Andrea Barral of the Centro Atomico Constituyentes, GIyA, CNEA, San Martin, Buenos Aires, Argentina; and Pablo Ordejon, Centre d'Investigacio en Nanociencia i Nanotecnologia, Barcelona, Spain.

.


Related Links
Ohio University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Mighty Micropumps: Small but Powerful Vacuum Pumps Demonstrated
Washington DC (SPX) Jun 07, 2013
DARPA-funded researchers recently demonstrated the world's smallest vacuum pumps. This breakthrough technology may create new national security applications for electronics and sensors that require a vacuum: highly sensitive gas analyzers that can detect chemical or biological attack, extremely accurate laser-cooled chip-scale atomic clocks and microscale vacuum tubes. In 2008, DARPA's Chi ... read more


CHIP TECH
A path to compact, robust sources for ultrashort laser pulses

Dutch duo peddle old bikes as fashion, furniture

To improve today's concrete, do as the Romans did

Magnetic monopoles erase data

CHIP TECH
Mutualink Platform to be Deployed by US DoD during JUICE 2013

General Dynamics to Deliver U.S. Army's Newest Tactical Ground Station Intelligence System

Boeing-built WGS-5 Satellite Enhances Tactical Communications for Warfighters

US Navy And Lockheed Martin Deliver Secure Communications Satellite For Mobile Users

CHIP TECH
Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

The Future of Space Launch

Rocket Engine Maker Proton-PM to Invest in New Products

CHIP TECH
Lockheed Martin Completes Functional Testing of First GPS III Satellite Bus Electronic Systems

Google to buy Israeli GPS app Waze for $1 bln: reports

Glitch puts off Indian navigation satellite launch by a fortnight

Orbcomm And Cartrack Deliver Telematics Solution For African Market

CHIP TECH
Boeing EMARSS Aircraft Completes First Test Flight

Pilot Completes First F-35 Vertical Landing for Royal Air Force

Egypt report blames balloon crash on pilot, leak

Shun Tak Holdings buys a third of Jetstar Hong Kong

CHIP TECH
Study suggests second life for possible spintronic materials

Spintronics approach enables new quantum technologies

Resistivity switch is window to role of magnetism in iron-based superconductors

'Temporal cloaking' could bring more secure optical communications

CHIP TECH
New maps show how shipping noise spans the globe

Magnetospheric Multiscale Mission Team Assemble Flight Observatory

Elevated carbon dioxide making arid regions greener

Landsat 8 Satellite Begins Watch

CHIP TECH
Urban Indians grow concerned about pollution: survey

Microplastic pollution prevalent in lakes too

Fresh oil spill from Turkish tanker off Cape Town

Poland dumps old garbage system for greener setup




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement