Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Study reveals ordinary glass's extraordinary properties
by Staff Writers
Chicago IL (SPX) Jan 11, 2013


A type of glass created by researchers at the University of Wisconsin-Madison using a new vapor-deposition method is extremely stable. The rainbow of colors in this super-stable glass comes from variations in its thickness. Credit: Mark Ediger/University of Wisconsin-Madison.

Technologically valuable ultrastable glasses can be produced in days or hours with properties corresponding to those that have been aged for thousands of years, computational and laboratory studies have confirmed.

Aging makes for higher quality glassy materials because they have slowly evolved toward a more stable molecular condition. This evolution can take thousands or millions of years, but manufacturers must work faster. Armed with a better understanding of how glasses age and evolve, researchers at the universities of Chicago and Wisconsin-Madison raise the possibility of designing a new class of materials at the molecular level via a vapor-deposition process.

"In attempts to work with aged glasses, for example, people have examined amber," said Juan de Pablo, UChicago's Liew Family Professor in Molecular Theory and Simulations. "Amber is a glass that has been aged millions of years, but you cannot engineer that material. You get what you get." de Pablo and Wisconsin co-authors Sadanand Singh and Mark Ediger report their findings in the latest issue of Nature Materials.

Ultrastable glasses could find potential applications in the production of stronger metals and in faster-acting pharmaceuticals. The latter may sound surprising, but drugs with the amorphous molecular structure of ultrastable glass could avoid crystallization during storage and be delivered more rapidly in the bloodstream than pharmaceuticals with a semi-crystalline structure. Amorphous metals, likewise, are better for high-impact applications than crystalline metals because of their greater strength.

The Nature Materials paper describes computer simulations that Singh, a doctoral student in chemical engineering at UW-Madison, carried out with de Pablo to follow-up some intriguing results from Ediger's laboratory.

Growing stable glasses
Ediger, like researchers for decades before him, had been growing materials via vapor deposition in a vacuum chamber. In this process, glasses are created when a sample a sample material is heated, then vaporizes and finally condenses and grows atop an experimental surface.

Several years ago, he discovered that glasses grown this way on a specially prepared surface that is kept within a certain temperature range exhibit far more stability than ordinary glasses. Previous researchers must have grown this material under the same temperature conditions, but failed to recognize the significance of what they had done, Ediger said.

Ediger speculated that growing glasses under these conditions, which he compares to the Tetris video game, gives molecules extra room to arrange themselves into a more stable configuration. But he needed Singh and de Pablo's computer simulations to confirm his suspicions that he had actually produced a highly evolved, ordinary glass rather than an entirely new material.

"There's interest in making these materials on the computer because you have direct access to the structure, and you can therefore determine the relationship between the arrangement of the molecules and the physical properties that you measure," said de Pablo, a former UW-Madison faculty member who joined UChicago's new Institute for Molecular Engineering earlier this year.

There are challenges, though, to simulating the evolution of glasses on a computer. Scientists can cool a glassy material at the rate of one degree per second in the laboratory, but the slowest computational studies can only simulate cooling at a rate of 100 million degrees per second. "We cannot cool it any slower because the calculations would take forever," de Pablo said.

"It had been believed until now that there is no correlation between the mechanical properties of a glass and the molecular structure; that somehow the properties of a glass are "hidden" somewhere and that there are no obvious structural signatures," de Pablo said.

Creating better materials
"What we found here is that there are actually differences, it's just that you had to create better glassy materials. Once you create these materials, you see that the structure, the differences between ordinary and stable glasses are clearly there and are actually pronounced."

Ultrastable glasses achieve their stability in a manner analogous to the most efficiently packed, multishaped objects in Tetris, each consisting of four squares in various configurations that rain from the top of the screen.

"This is a little bit like the molecules in my deposition apparatus raining down onto this surface, and the goal is to perfectly pack a film, not to have any voids left," Ediger said.

The object of Tetris is to manipulate the objects so that they pack into a perfectly tight pattern at the bottom of the screen. "The difference is, when you play the game, you have to actively manipulate the pieces in order to build a well-packed solid," Ediger said. "In the vapor deposition, nature does it for us."

But in Tetris and experiments alike, when the objects or molecules descend too quickly, the result is a poorly packed, void-riddled pattern.

"In the experiment, if you either rain the molecules too fast or choose a low temperature at which there's no mobility at the surface, then this trick doesn't work," Ediger said. Then it would be like taking a bucket of odd-shaped pieces and just dumping them on the floor. There are all sorts of voids and gaps because the molecules didn't have any opportunity to find a good way of packing."

"Ultrastable glasses from in silico vapor deposition," by Sadamand Singh, M.D. Ediger and Juan J. de Pablo," Nature Materials. National Science Foundation and the U.S. Department of Energy.

.


Related Links
University of Chicago
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Japan to survey Pacific seabed for rare earth
Tokyo (AFP) Jan 10, 2013
Japan will launch a survey of its Pacific seabed, an official said Thursday, hoping to find rare earth deposits large enough to supply its high-tech industries and reduce its dependence on China. Researchers from the Japan Agency for Marine-Earth Science and Technology will start the probe from January 21 on the seabed near Minamitorishima island, some 2,000 kilometres (1,250 miles) southeas ... read more


TECH SPACE
Study reveals ordinary glass's extraordinary properties

Bottom-up approach provides first characterization of pyroelectric nanomaterials

Chemical modules that mimic predator-prey and other behaviors

Government funding for 'super-material'

TECH SPACE
TS Receives Funding For SNAP Deployable Satellite Systems Equipment

MUOS Waveform Will Improve Secure Communications Capabilities

DARPA selects SwRI's K-band space crosslink radio for flight development as part of System F6 Program

BAE pulls out of Australian comms tender

TECH SPACE
Roscosmos Releases Report On Proton Launch Anomaly

Russia plans replacement for Soyuz rocket

Arianespace's industry leadership will continue with 12 launcher family missions planned in 2013

Arianespace addresses The Insurance Institute of London

TECH SPACE
New location system could compete with GPS

Beidou's unique services attractive to Chinese companies

China eyes greater market share for its GPS rival

Researchers told to ward off navigation system interference

TECH SPACE
China-owned BOC Aviation says ordering 50 Airbus A320s

Taiwan expecting US-made Apaches: report

China approves second Beijing airport: state media

Turkey postpones order for its first two F-35 fighters

TECH SPACE
New biochip technology uses tiny whirlpools to corral microbes

Power spintronics: Producing AC voltages by manipulating magnetic fields

Researchers demonstrate record-setting p-type transistor

Marvell hit with billion-dollar verdict in patent case

TECH SPACE
Canada Launches Final Stage of RADARSAT Project

China no longer reliant on satellite image imports

TerraSAR-X image of the month - the coastal cliffs of Christmas Island

Joint Polar Satellite System Common Ground System now serving newest mission

TECH SPACE
China pollution anger spills into state media

Beijing choked by third day of hazardous smog

Italy extends emergency powers for Costa shipwreck

Pollution turns Hong Kong harbour from 'fragrant' to foul




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement