|
. | . |
|
by Hamish Johnston London, UK (SPX) Mar 13, 2013
A new wave phenomenon in liquids has been spotted by physicists in France. By shaking small cylindrical dishes of silicone oil, the team created standing waves that spontaneously form a range of patterns, including stars and polygons. Calculations suggest that the shapes are caused by nonlinear interactions between "gravity waves" - the name given to any fluid wave in which gravity is the dominant restoring force. The researchers hope that their work could lead to a better understanding of other nonlinear gravity waves such as tsunamis and rogue ocean waves. Gravity waves normally interact in a linear manner - much like light waves - but nonlinear interactions can also play an important role in how they are created and propagate. Indeed, some physicists think that nonlinear effects could be responsible for the giant "rogue" waves that are occasionally created in the Earth's oceans. To study nonlinear effects, Jean Rajchenbach, Didier Clamond and Alphonse Leroux at the University of Nice looked at gravity waves in silicone oil. Water and oil are both Newtonian fluids, but the latter is easier to work with in the lab because its greater viscosity supports larger-amplitude waves.
Two types of wave But as the amplitude was increased beyond about 1.55 mm, however, two counter-propagating waves appeared. These are a "centrifugal" wave that moves outwards from the centre of the dish and a "centripetal" wave that moves inwards from the edge. At relatively low amplitudes this resulted in a standing wave pattern of concentric rings. Closer inspection revealed that where the crests of the centrifugal and centripetal waves cross, they do not simply superimpose as linear waves do. Instead, the waves experience a phase shift similar to that seen when two plane-wave solitons cross.
Stars and pentagons Finally, when the amplitude was cranked up to 1.95 mm, the crest oscillated between a pentagon and a five-pointed star with a frequency of 8 Hz (see image). An amazing feature of this oscillating structure is that it does not depend on the shape or size of the container - and even appeared in rectangular-shaped containers. To understand this bizarre behaviour, the researchers were inspired by theories that describe the formation of quasicrystals in solids and quasipatterns in capillary waves - tiny waves in fluids that are not affected by gravity. They created a theory that, says Clamond, can predict the amplitudes at which the system transforms from one standing-wave configuration to another - but falls short of predicting which shapes the standing wave will assume.
New theory needed The research is described in Physical Review Letters.
Related Links Institute of Physics Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |