|
. | . |
|
by Staff Writers Heidelberg, Germany (SPX) Dec 22, 2013
Photolithography uses light beams to design thin geometric patterns on the substrates of semiconductors used in microelectronic devices. This is achieved using a chemical reaction on a light-sensitive chemical, called photoresist. The trouble is that the phenomenon of light diffraction does not permit highly accurate patterns. Often, the edges of stripes have low contrast, and the distances between the stripes and the stripes' width are limited by what is referred to as Rayleigh's diffraction limit. Now, a scientist from Russia has developed a quantum lithography protocol designed to improve the resolution of this technology. The findings of George Miroshnichenko, a physicist at Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, have just been published in EPJ D. Until now, quantum lithograph protocols have been based on multi-photon absorption. This means that the frequency of the incoming light needed to be several times smaller than the frequency required for the absorption of a single photon, to trigger the absorption of multiple photons by the photoresist. As a result, this approach requires a higher wavelength, and produces lower resolution. Instead, Miroshnichenko establishes the formula for the probability of a single - and no longer multiple - photon transition from a bound state of a quantum system to a state of continuous spectrum, using the so-called Markov approximation. This makes it possible to select the exposure time and the beam's intensity to obtain a narrow stripe in the photoresist on the substrate. Thus, in negative photoresist, this protocol can be used to create a stripe with a width equal to half the wavelength and high-contrast edges. For positive photoresist, thin stripes can be formed on the substrate with a width that is substantially smaller than the wavelength, but the distance between these stripes is equal to half the wavelength. Reference: G. P. Miroshnichenko (2013), Quantum lithography on bound-free transitions, European Physical Journal D, DOI 10.1140/epjd/e2013-40586-2
Related Links Springer Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |