|
. | . |
|
by Staff Writers Washington DC (SPX) Oct 31, 2014
If you've ever gone for a spin in a luxury car and felt your back being warmed or cooled by a seat-based climate control system, then you've likely experienced the benefits of a class of materials called thermoelectrics. Thermoelectric materials convert heat into electricity, and vice versa, and they have many advantages over more traditional heating and cooling systems. Recently, researchers have observed that the performance of some thermoelectric materials can be improved by combining different solid phases -- more than one material intermixed like the clumps of fat and meat in a slice of salami. The observations offer the tantalizing prospect of significantly boosting thermoelectrics' energy efficiency, but scientists still lack the tools to fully understand how the bulk properties arise out of combinations of solid phases. Now a research team based at the California Institute of Technology (Caltech) has developed a new way to analyze the electrical properties of thermoelectrics that have two or more solid phases. The new technique could help researchers better understand multi-phase thermoelectric properties - and offer pointers on how to design new materials to get the best properties. The team describes their new technique in a paper published in the journal Applied Physics Letters, from AIP Publishing.
An Old Theory Does a 180 "It's like you've made chocolate chip cookies, and you want to know what the chocolate chips and the batter taste like by themselves, but you can't, because every bite you take has both chocolate chips and batter," said Jeff Snyder, a researcher at Caltech who specializes in thermoelectric materials and devices. To separate the "chips" and "batter" without un-baking the cookie, Snyder and his colleagues turned to a decades old theory, called effective medium theory, and they gave it a new twist. "Effective medium theory is pretty old," said Tristan Day, a graduate student in Snyder's Caltech laboratory and first author on the APL paper. The theory is traditionally used to predict the properties of a bulk composite based on the properties of the individual phases. "What's new about what we did is we took a composite, and then backed-out the properties of each constituent phase," said Day. The key to making the reversal work lies in the different way that each part of a composite thermoelectric material responds to a magnetic field. By measuring certain electrical properties over a range of different magnetic field strengths, the researchers were able to tease apart the influence of the two different phases. The team tested their method on the widely studied thermoelectric Cu1.97 Ag0.03Se, which consists of a main crystal structure of Cu2Se and an impurity phase with the crystal structure of CuAgSe.
Temperature Control of the Future? "The definite benefits of using thermoelectrics are that there are no moving parts in the cooling mechanism, and you don't have to have the same temperature fluctuations typical of a compressor-based refrigerator that turns on every half hour, rattles a bit and then turns off," said Snyder. One of the drawbacks of the thermoelectric cooling systems, however, is their energy consumption. If used in the same manner as a compressor-based cooling system, most commercial thermoelectrics would require approximately 3 times more energy to deliver the same cooling power. Theoretical analysis suggests the energy efficiency of thermoelectrics could be significantly improved if the right material combinations and structures were found, and this is one area where Synder and his colleagues' new calculation methods may help. Many of the performance benefits of multi-phase thermoelectrics may come from quantum effects generated by micro- and nano-scale structures. The Caltech researchers' calculations make classical assumptions, but Snyder notes that discrepancies between the calculations and observed properties could confirm nanoscale effects. Snyder also points out that while thermoelectrics may be less energy efficient than compressors, their small size and versatility mean they could be used in smarter ways to cut energy consumption. For example, thermoelectric-based heaters or coolers could be placed in strategic areas around a car, such as the seat and steering wheel. The thermoelectric systems would create the feeling of warmth or coolness for the driver without consuming the energy to change the temperature of the entire cabin. "I don't know about you, but when I'm uncomfortable in a car it's because I'm sitting on a hot seat and my backside is hot," said Snyder. "In principle, 100 watts of cooling on a car seat could replace 1000 watts in the cabin." Ultimately, the team would like to use their new knowledge of thermoelectrics to custom design 'smart' materials with the right properties for any particular application. "We have a lot of fun because we think of ourselves as material engineers with the periodic table and microstructures as our playgrounds," Snyder said. "Determining conductivity and mobility values of individual components in multiphase composite Cu1.97 Ag0.03Se," is authored by Tristan W. Day, Wolfgang G. Zeier, David R. Brown, Brent C. Melot, and G. Jeffrey Snyder. It will be published in the journal Applied Physics Letters on October 28, 2014 (DOI: 10.1063/1.4897435).
Related Links American Institute of Physics Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |