Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Repeated Self-Healing Now Possible in Composite Materials
by Staff Writers
Urbana IL (SPX) Apr 22, 2014


3D microvascular networks for self-healing composites: Researchers were able to achieve more effective self-healing with the herringbone vascular network (top) over a parallel design (bottom), evidenced by the increased mixing (orange-yellow) of individual healing agents (red and green) across a fracture surface. Image courtesy Jason Patrick.

Internal damage in fiber-reinforced composites, materials used in structures of modern airplanes and automobiles, is difficult to detect and nearly impossible to repair by conventional methods. A small, internal crack can quickly develop into irreversible damage from delamination, a process in which the layers separate. This remains one of the most significant factors limiting more widespread use of composite materials.

However, fiber-composite materials can now heal autonomously through a new self-healing system, developed by researchers in the Beckman Institute's Autonomous Materials Systems (AMS) Group at the University of Illinois at Urbana-Champaign, led by professors Nancy Sottos, Scott White, and Jeff Moore.

Sottos, White, Moore, and their team created 3D vascular networks-patterns of microchannels filled with healing chemistries-that thread through a fiber-reinforced composite. When damage occurs, the networks within the material break apart and allow the healing chemistries to mix and polymerize, autonomously healing the material, over multiple cycles. These results were detailed in a paper titled "Continuous self-healing life cycle in vascularized structural composites," published in Advanced Materials.

"This is the first demonstration of repeated healing in a fiber-reinforced composite system," said Scott White, aerospace engineering professor and co-corresponding author.

"Self-healing has been done before in polymers with different techniques and networks, but they couldn't be translated to fiber-reinforced composites. Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana
was the development of the vascularization technique."

"The beauty of this self-healing approach is, we don't have to probe the structure and say, this is where the damage occurred and then repair it ourselves," said Jason Patrick, a Ph.D. candidate in civil engineering and lead author.

The vasculature within the system integrates dual networks that are isolated from one other. Two liquid healing agents (an epoxy resin and hardener) are sequestered in two different microchannel networks.

"When a fracture occurs, this ruptures the separate networks of healing agents, automatically releasing them into the crack plane-akin to a bleeding cut," Patrick said. "As they come into contact with one another in situ, or within the material, they polymerize to essentially form a structural glue in the damage zone. We tested this over multiple cycles and all cracks healed successfully at nearly 100 percent efficiency."

Notably, the vascular networks within the structure are not straight lines. In order for the healing agents to combine effectively after being released within the crack, the vessels were overlapped to further promote mixing of the liquids, which both have a consistency similar to maple syrup.

Fiberglass and other composite materials are widely used in aerospace, automotive, naval, civil, and even sporting goods because of their high strength-to-weight ratio-they pack a lot of structural strength into a very lean package. However, because the woven laminates are stacked in layers, it is easier for the structure to separate between the layers, making this self-healing system a promising solution to a long-standing problem and greatly extending their lifetime and reliability.

"Additionally, creating the vasculature integrates seamlessly with typical manufacturing processes of polymer composites, making it a strong candidate for commercial use," said Nancy Sottos, materials science and engineering professor and co-corresponding author.

Fiber-composite laminates are constructed by weaving and stacking multiple layers of reinforcing fabric, which are then co-infused with a binding polymer resin. Using that same process, the researchers stitched in a sort of fishing line, made from a bio-friendly polymer and coined "sacrificial fiber," within the composite. Once the composite was fabricated, the entire system was heated to melt and evaporate the sacrificial fibers, leaving behind hollow microchannels, which became the vasculature for the self-healing system.

This work was supported by the Air Force Office of Scientific Research, the Department of Homeland Security Center of Excellence for Explosives Detection, Mitigation, and Response, and the Army Research Laboratory. Jeff Moore, Kevin Hart, Brett Krull, and Charles Diesendruck were also co-authors on the paper.

.


Related Links
Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Quantum superconductor-metal to glass transition observed
Moscow, Russia (SPX) Apr 19, 2014
The article "Collapse of superconductivity in a hybrid tin-grapheme Josephson junction array'" (authors: Zheng Han, Adrien Allain, Hadi Arjmandi-Tash,Konstantin Tikhonov, Mikhail Feigelman, Benjamin Sacepe,Vincent Bouchiat, published in Nature Physics on March 30, 2014, DOI:10.1038/NPHYS2929) presents the results of the first experimental study of the graphene-based quantum phase transition of t ... read more


TECH SPACE
Tiny Step Edges, Big Step for Surface Science

Quantum superconductor-metal to glass transition observed

Thinnest feasible membrane produced

Chiral breathing: Electrically controlled polymer changes its optical properties

TECH SPACE
Harris supplying more communications terminals to Navy

iSYS LLC gets order for cellular wireless managed services

Radio terminals for MUOS satellite communications have testing facility

NGC Ships Payload Module For 4th Advanced EHF Protected ComSat

TECH SPACE
45th Space Wing supports third SpaceX Launch for ISS Resupply mission

Arianespace's Vega launcher receives its "upper composite" for this month's launch

Launcher build-up begins for Arianespace's fifth Ariane 5 mission to orbit an ATV

Russian Rockets used by the US

TECH SPACE
World's First Satellite Communicator with Built-In Navigation

Russia's Glonass system fails second time in April

Facebook rolls out 'nearby friends' feature

Fifth Boeing GPS IIF Satellite Joins Global Positioning System

TECH SPACE
State Department okays helicopter deal for Mexico

Boeing labor dispute settled by arbitration

Sikorsky, Army demonstrate optionally piloted Black Hawk

Australia to buy 58 US F-35s for $11.6bn

TECH SPACE
Ultra-fast electrical circuits using light-generated tunneling currents

Progress made in developing nanoscale electronics

Piezotronics and piezo-phototronics leading to unprecedented active electronics and optoelectronics

Superconducting Qubit Array Points the Way to Quantum Computers

TECH SPACE
NASA Sees Earth From Orbit In 2013

Google online maps go back in time

NASA calls on Earthlings to celebrate Earth Day with #GlobalSelfie

Egyptian sensing satellite placed in orbit

TECH SPACE
The result of slow degradation

MEPs back plans to slash use of plastic shopping bags

Oil company blamed for toxic tap water in China: Xinhua

Snowstorms and power outages present elevated risk for carbon monoxide poisoning




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.