Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Quantum conductors benefit from growth on smooth foundations
by Staff Writers
Washington DC (SPX) Oct 25, 2013


File image.

Imagine if the "information superhighway" had HOV lanes so that data could be stored, processed and disseminated many times faster than possible with today's electronics. Researchers in the United States and China have teamed to develop such a speedway for future devices, an exotic type of electrical conductor called a topological insulator (TI).

In a new paper in the journal AIP Advances, the international collaborators report that they grew two types of TI materials inside an ultra-high vacuum chamber on both smooth and rough surfaces and then evaluated their abilities to transport electrons.

A TI harnesses not only the charge of electrons, but also their spin and magnetic properties. The interior of this unusual structure is an insulator, something that blocks the flow of current, while the surface acts as a highly efficient conductor of electricity. So efficient, in fact, that the electrons never deviate from their path.

"This makes the TI promising for applications such as future high-speed, dissispationless [does not involve energy dissipation] computers where massive quantities of information would be carried by electrons in quantum channels," said physicist and corresponding author Jian Wang at Peking University's International Center for Quantum Materials.

"Avoiding the scattering of electrons that occurs in today's computers would keep high-speed devices from experiencing chip overheating, destruction of the data stream, and a slowdown of operational speed."

In their study, the researchers grew two types of TI materials, bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3), one atomic layer at a time on both vicinal (rough) and non-vicinal (smooth) forms of a substrate material commonly used by the semiconductor industry, gallium arsenide (GaAs).

"Higher quality, better-electron-conducting TI films were grown on the smoother surface substrate and that was unexpected," says Timothy Morgan, co-author and nanotechnologist at the Arkansas Institute for Nanoscale Material Sciences and Engineering.

"Typically, rough spots would provide anchor points for film growth kind of like putting the first pieces of a tile floor up against a wall so that the rest fall in alignment. This new finding tells us we need to do more investigations of the growth mechanisms involved."

Now that the researchers have shown that they can grow high-quality TI materials on industry standard substrates, they say the next step is to put them to work.

"We will try to design and fabricate some fundamental devices using TI materials to see how well they perform tasks such as electronic switching and photodetection," says Zhaoquan Zeng, lead author an and postdoctoral researcher at Ohio State University's Electrical and Computer Engineering Department.

The article, "Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction" by Zhaoquan Zeng, Timothy A. Morgan, Dongsheng Fan, Chen Li, Yusuke Hirono, Xian Hu, Yanfei Zhao, Joon Sue Lee, Jian Wang, Zhiming M. Wang, Shuiqing Yu, Michael E. Hawkridge, Mourad Benamara, and Gregory J. Salamo appears in the journal AIP Advances.

.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Researchers Advance Scheme to Design Seamless Integrated Circuits Etched on Graphene
Santa Barbara CA (SPX) Oct 24, 2013
Researchers in electrical and computer engineering at UC Santa Barbara have introduced and modeled an integrated circuit design scheme in which transistors and interconnects are monolithically patterned seamlessly on a sheet of graphene, a 2-dimensional plane of carbon atoms. The demonstration offers possibilities for ultra energy-efficient, flexible, and transparent electronics. Bulk mate ... read more


CHIP TECH
Zoomable Holograms Pave the Way for Versatile, Portable Projectors

Copper Shock: An Atomic-scale Stress Test

Study Finds Natural Compound Can Be Used for 3-D Printing of Medical Implants

NIST measures laser power with portable scale

CHIP TECH
Northrop Grumman Cobham Intercoms Receives First Order For AN VIC-5 Enhanced Vehicular Comms

Raytheon produces new US Army satellite communications terminals ahead of schedule

Lockheed Martin To Continue In Theater Support for Real-Time Surveillance

Lockheed Martin to Deliver Communications and Transmission Services to US Army

CHIP TECH
ILS Proton Launches Sirius FM-6 Satellite

Boeing Finalizes Agreement for Kennedy Space Center Facility

Russia Plans to Spend $22M on Soyuz-2 Launch Pad

Ariane 5 arrives at the Spaceport's Final Assembly Building for payload installation

CHIP TECH
Raytheon demonstrates first Direct Geo-Positioning Metric Sensor

Britain considering car-tracking 'bullet' technology

Orbcomm Launches Solar-Powered Trailer Tracking Solution

Software Uses Cyborg Swarm To Map Unknown Environs

CHIP TECH
Boeing, Lockheed team up for new US Air Force bomber

The Effects of Space Weather on Aviation

Space ballooning: 20-mile-high flights offered for $75K

Boeing Begins Assembling 3rd KC-46A Tanker Aircraft

CHIP TECH
JQI team 'gets the edge' on photon transport in silicon

Atomically Thin Device Promises New Class of Electronics

Tiny Sensors Put the Squeeze on Light

Quantum conductors benefit from growth on smooth foundations

CHIP TECH
Hi-tech aqueduct explorers map Rome's 'final frontier'

NASA satellites help track volcanic ash affecting air travel

New evidence on lightning strikes

How Earth's rotation affects vortices in nature

CHIP TECH
Pollution debated in Canada's oil fields

Mustard gas traces found close to Poland's Baltic Sea coast

Air Pollution Sources And Atmosphere-Warming Particles In South Asia

China to begin inspection plan for air pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement