. Space Industry and Business News .




.
CHIP TECH
Physicists entangle two atoms using microwaves for the first time
by Staff Writers
Boulder CO (SPX) Aug 11, 2011

illustration only

Physicists at the National Institute of Standards and Technology (NIST) have for the first time linked the quantum properties of two separated ions (electrically charged atoms) by manipulating them with microwaves instead of the usual laser beams, suggesting it may be possible to replace an exotic room-sized quantum computing "laser park" with miniaturized, commercial microwave technology similar to that used in smart phones.

Microwaves, the carrier of wireless communications, have been used in past experiments to manipulate single ions. But the NIST group is the first to position microwaves sources close enough to the ions-just 30 micrometers away-and create the conditions enabling entanglement, a quantum phenomenon expected to be crucial for transporting information and correcting errors in quantum computers.

Described in the August 11 issue of Nature,* the experiments integrate wiring for microwave sources directly on a chip-sized ion trap and use a desktop-scale table of lasers, mirrors, and lenses that is only about one-tenth of the size previously required.

Low-power ultraviolet lasers are still needed to cool the ions and observe experimental results but might eventually be made as small as those in portable DVD players.

Compared to complex, expensive laser sources, microwave components could be expanded and upgraded more easily to build practical systems of thousands of ions for quantum computing and simulations.

"It's conceivable a modest-sized quantum computer could eventually look like a smart phone combined with a laser pointer-like device, while sophisticated machines might have an overall footprint comparable to a regular desktop PC," says NIST physicist Dietrich Leibfried, a co-author of the new paper.

"Although quantum computers are not thought of as convenience devices that everybody wants to carry around, they could use microwave electronics similar to what is used in smart phones. These components are well developed for a mass market to support innovation and reduce costs. The prospect excites us."

Quantum computers would harness the unusual rules of quantum physics to solve certain problems-such as breaking today's most widely used data encryption codes-that are currently intractable even with supercomputers.

A nearer-term goal is to design quantum simulations of important scientific problems, to explore quantum mysteries such as high-temperature superconductivity, the disappearance of electrical resistance in certain materials when sufficiently chilled.

Ions are a leading candidate for use as quantum bits (qubits) to hold information in a quantum computer. Although other promising candidates for qubits-notably superconducting circuits, or "artificial atoms"-are manipulated on chips with microwaves, ion qubits are at a more advanced stage experimentally in that more ions can be controlled with better accuracy and less loss of information.

The same NIST research group previously used ions and lasers to demonstrate many basic components and processes for a quantum computer. In the latest experiments, the NIST team used microwaves to rotate the "spins" of individual magnesium ions and entangle the spins of a pair of ions.

This is a "universal" set of quantum logic operations because rotations and entanglement can be combined in sequence to perform any calculation allowed by quantum mechanics, Leibfried says.

In the experiments, the two ions were held by electromagnetic fields, hovering above an ion trap chip consisting of gold electrodes electroplated onto an aluminum nitride backing. Some of the electrodes were activated to create pulses of oscillating microwave radiation around the ions.

Radiation frequencies are in the 1 to 2 gigahertz range. The microwaves produce magnetic fields used to rotate the ions' spins, which can be thought of as tiny bar magnets pointing in different directions. The orientation of these tiny bar magnets is one of the quantum properties used to represent information.

Scientists entangled the ions by adapting a technique they first developed with lasers. If the microwaves' magnetic fields gradually increase across the ions in just the right way, the ions' motion can be excited depending on the spin orientations, and the spins can become entangled in the process.

Scientists had to find the right combination of settings in the three electrodes that provided the optimal change in the oscillating magnetic fields across the extent of the ions' motion while minimizing other, unwanted effects. The properties of the entangled ions are linked, such that a measurement of one ion would reveal the state of the other.

The use of microwaves reduces errors introduced by instabilities in laser beam pointing and power as well as laser-induced spontaneous emissions by the ions. However, microwave operations need to be improved to enable practical quantum computations or simulations.

The NIST researchers achieved entanglement 76 percent of the time, well above the minimum threshold of 50 percent defining the onset of quantum properties, but not yet competitive with the best laser-controlled operations at 99.3 percent.

In addition to improving microwave operations by reducing unwanted ion motion, the NIST team also plans to study how to suppress cross-talk between different information processing zones on the same chip. Different frequencies could be used for logic operations and control of other nearby qubits, for instance. Smaller traps could enable faster operations if unwanted heating can be suppressed, according to the paper.

Two authors contributed to the research while at NIST and now work at Leibniz Universitat Hannover in Braunschweig, Germany, and Georgia Institute of Technology, Atlanta, Ga. C. Ospelkaus, U. Warring, Y. Colombe, K.R. Brown, J.M. Amini, D. Leibfried and D.J. Wineland. 2011. Microwave quantum logic gates for trapped ions. Nature. August 11.




Related Links
National Institute of Standards and Technology (NIST)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Quantum super-computing sees microwave breakthrough
Paris (AFP) Aug 10, 2011
Physicists in the United States on Wednesday notched up a lab success in the quest for quantum computers, whose stellar capacities have already earned them the nickname of "super-computers on steroids." Atoms can be excited to a quantum condition using microwaves, an advance over larger and bulkier lasers, until now the only way to achieve this essential state, they said. In theory, it m ... read more


CHIP TECH
Samsung, Apple battle goes to Dutch court

Samsung appeals Europe tablet sale ban

No charges for iPhone 4 prototype bloggers

HP cuts tablet price in bid to challenge iPad

CHIP TECH
Raytheon Develops Miniature Antenna To Extend Millimeter Wave Friendly ID Technology

China launches another experimental satellite

USAF Approves Production of NGC Deployable Digital Wireless System for Remote Warfighters

Raytheon BBN Technologies Awarded DoD Contract to Develop a Secure, Attributed Military Network System

CHIP TECH
Arabsat-5C is welcomed in French Guiana for Arianespace's next Ariane 5 launch

Arianespace blasts another pair of satellites into orbit

Lockheed Martin-Built BSAT-3c/JCSAT-110R Satellite Launched Successfully For Japanese Firms

Ariane 5 ready for next heavy-lift flight

CHIP TECH
S. Korea to fine Apple over tracking feature

Toucans wearing GPS backpacks help Smithsonian scientists study seed dispersal

China launches navigation satellite: Xinhua

China to launch 9th orbiter for indigenous global navigation network

CHIP TECH
Embraer plans to build executive jets in China

Cathay Pacific first-half net profit falls 59%

Model will help monitor airport security

Making airport runways safer

CHIP TECH
Data Motion Metric Needed for Supercomputer Rankings

Quantum super-computing sees microwave breakthrough

Physicists entangle two atoms using microwaves for the first time

Engineers solve longstanding problem in photonic chip technology

CHIP TECH
NPP Satellite Completes Comprehensive Testing

Tohoku Tsunami Created Icebergs In Antarctica

Software on the Fly

La Ninas distant effects in East Africa

CHIP TECH
Toxic spill averted as tropical storm nears China

Pollutants found at US base in S.Korea: officials

Toxicologists Find Weathered Crude Oil Less Toxic to Bird Eggs

New study finds cancer-causing mineral in US road gravel


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement