Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Novel technique for chemical identification at the nanometer scale developed
by Staff Writers
Urbana IL (SPX) Mar 14, 2013


Atomic force microscope infrared spectroscopy (AFM-IR) of polymer nanostructures.

For more than 20 years, researchers have been using atomic force microscopy (AFM) to measure and characterize materials at the nanometer scale. However AFM-based measurements of chemistry and chemical properties of materials were generally not possible, until now.

Researchers at the University Illinois report that they have measured the chemical properties of polymer nanostructures as small as 15 nm, using a novel technique called atomic force microscope infrared spectroscopy (AFM-IR).

The article, "Atomic force microscope infrared spectroscopy on 15nm scale polymer nanostructures," appears in the Review of Scientific Instruments 84, published by the American Institute of Physics.

"AFM-IR is a new technique for measuring infrared absorption at the nanometer scale," explained William P. King, an Abel Bliss Professor in the Department of Mechanical Science and Engineering at Illinois. "The first AFM-based measurements could measure the size and shape of nanometer-scale structures. Over the years, researchers improved AFM to measure mechanical properties and electrical properties on the nanometer scale.

"These infrared absorption properties provide information about chemical bonding in a material sample, and these infrared absorption properties can be used to identify the material," added King, who is also the director of the National Science Foundation (NSF) Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems at Illinois.

"The polymer nanostructures are about an order of magnitude smaller than those measured previously."

The research is enabled by a new way to analyze the way the nanometer-scale dynamics within the AFM-IR system. The researchers analyzed the AFM-IR dynamics using a wavelet transform, which organizes the AFM-IR signals that vary in both time and in frequency.

By separating the time and frequency components, the researchers were able to improve the signal to noise within AFM-IR and to thereby measure significantly smaller samples than previously possible.

The ability to measure the chemical composition of polymer nanostructures is important for a variety of applications, including semiconductors, composite materials, and medical diagnostics.

The authors on the research are Jonathan Felts, Hanna Cho, Min-Feng Yu, Lawrence Bergman, Alex Vakkakis, and William P. King.

.


Related Links
Department of Mechanical Science and Engineering at Illinois
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Star-shaped waves spotted in shaken fluid
London, UK (SPX) Mar 13, 2013
A new wave phenomenon in liquids has been spotted by physicists in France. By shaking small cylindrical dishes of silicone oil, the team created standing waves that spontaneously form a range of patterns, including stars and polygons. Calculations suggest that the shapes are caused by nonlinear interactions between "gravity waves" - the name given to any fluid wave in which gravity is the ... read more


TECH SPACE
Breaking the final barrier: room-temperature electrically powered nanolasers

New Technique Creates Stronger, Lightweight Magnesium Alloys

Novel technique for chemical identification at the nanometer scale developed

Aspirin may lower melanoma risk

TECH SPACE
Boeing Ships 5th WGS Satellite to Cape Canaveral for 2013 Launch

INTEROP-7000 uses ISSI to link IP-based voice comms with legacy radio

Space race under way to create quantum satellite

Boeing Receives USAF Contract for Integrated C4ISR Targeting Solution

TECH SPACE
Vega receives its upper stage as the next mission's two primary passengers land in French Guiana

Grasshopper Successfully Completes 80M Hover Slam

Musk: 'I'd like to die on Mars'

Ariane 5 vehicle for next ATV resupply mission in Kourou

TECH SPACE
Galileo fixes Europe's position in history

China city searching for 'modern Marco Polo'

Milestone for European navigation system

China targeting navigation system's global coverage by 2020

TECH SPACE
As F-35 costs soar, Boeing enters the fray

Boeing, KLM Demonstrate New Technologies to Optimize Flight

Singapore in 'final stages' of evaluating F-35

Embraer urges quick resolution of US contract challenge

TECH SPACE
New distance record for 400 Gb/s data transmission

NIST mechanical micro-drum used as quantum memory

Quantum computing moves forward

Creating indestructible self-healing circuits

TECH SPACE
Significant reduction in temperature and vegetation seasonality over northern latitudes

GOCE: the first seismometer in orbit

Japan's huge quake heard from space: study

Space station to watch for Earth disasters

TECH SPACE
Little faith in China leaders' pollution promises

Dead pigs contaminating Chinese river?

Toxic gas leak in South Korea, 11 hospitalised

Japan warns about smog drifting from China




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement