Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Northwestern scientists create chemical brain
by Staff Writers
Evanston IL (SPX) Aug 24, 2012


Chematica can test and evaluate every possible synthesis that exists, not only the few a particular chemist might have an interest in. In this way, the algorithms find truly optimal ways of making desired chemicals.

Northwestern University scientists have connected 250 years of organic chemical knowledge into one giant computer network - a chemical Google on steroids. This "immortal chemist" will never retire and take away its knowledge but instead will continue to learn, grow and share.

A decade in the making, the software optimizes syntheses of drug molecules and other important compounds, combines long (and expensive) syntheses of compounds into shorter and more economical routes and identifies suspicious chemical recipes that could lead to chemical weapons.

"I realized that if we could link all the known chemical compounds and reactions between them into one giant network, we could create not only a new repository of chemical methods but an entirely new knowledge platform where each chemical reaction ever performed and each compound ever made would give rise to a collective 'chemical brain,'" said Bartosz A. Grzybowski, who led the work. "The brain then could be searched and analyzed with algorithms akin to those used in Google or telecom networks."

Called Chematica, the network comprises some seven million chemicals connected by a similar number of reactions. A family of algorithms that searches and analyzes the network allows the chemist at his or her computer to easily tap into this vast compendium of chemical knowledge. And the system learns from experience, as more data and algorithms are added to its knowledge base.

Details and demonstrations of the system are published in three back-to-back papers in the Aug. 6 issue of the journal Angewandte Chemie.

Grzybowski is the senior author of all three papers. He is the Kenneth Burgess Professor of Physical Chemistry and Chemical Systems Engineering in the Weinberg College of Arts and Sciences and the McCormick School of Engineering and Applied Science.

In the Angewandte paper titled "Parallel Optimization of Synthetic Pathways Within the Network of Organic Chemistry," the researchers have demonstrated algorithms that find optimal syntheses leading to drug molecules and other industrially important chemicals.

"The way we coded our algorithms allows us to search within a fraction of a second billions of chemical syntheses leading to a desired molecule," Grzybowski said. "This is very important since within even a few synthetic steps from a desired target the number of possible syntheses is astronomical and clearly beyond the search capabilities of any human chemist."

Chematica can test and evaluate every possible synthesis that exists, not only the few a particular chemist might have an interest in. In this way, the algorithms find truly optimal ways of making desired chemicals.

The software already has been used in industrial settings, Grzybowski said, to design more economical syntheses of companies' products. Synthesis can be optimized with various constraints, such as avoiding reactions involving environmentally dangerous compounds. Using the Chematica software, such green chemistry optimizations are just one click away.

Another important area of application is the shortening of synthetic pathways into the so-called "one-pot" reactions. One of the holy grails of organic chemistry has been to design methods in which all the starting materials could be combined at the very beginning and then the process would proceed in one pot - much like cooking a stew - all the way to the final product.

The Northwestern researchers detail how this can be done in the Angewandte paper titled "Rewiring Chemistry: Algorithmic Discovery and Experimental Validation of One-Pot Reactions in the Network of Organic Chemistry."

The chemists have taught their network some 86,000 chemical rules that check - again, in a fraction of a second - whether a sequence of individual reactions can be combined into a one-pot procedure. Thirty predictions of one-pot syntheses were tested and fully validated. Each synthesis proceeded as predicted and had excellent yields.

In one striking example, Grzybowski and his team synthesized an anti-asthma drug using the one-pot method. The drug typically would take four consecutive synthesis and purification steps.

"Our algorithms told us this sequence could be combined into just one step, and we were naturally curious to check it out in a flask," Grzybowski said. "We performed the one-pot reaction and obtained the drug in excellent yield and at a fraction of the cost the individual steps otherwise would have accrued."

The third area of application is the use of the Chematica network approach for predicting and monitoring syntheses leading to chemical weapons. This is reported in the Angewandte paper titled "Chemical Network Algorithms for the Risk Assessment and Management of Chemical Threats."

"Since we now have this unique ability to scrutinize all possible synthetic strategies, we also can identify the ones that a potential terrorist might use to make a nerve gas, an explosive or another toxic agent," Grzybowski said.

Algorithms known from game theory first are applied to identify the strategies that are hardest to detect by the federal government - the use of substances, for example, such as kitchen salt, clarifiers, grain alcohol and a fertilizer, all freely available from a local convenience store. Characteristic combinations of seemingly innocuous chemicals, such as this example, are red flags.

This strategy is very different from the government's current approach of monitoring and regulating individual substances, Grzybowski said. Chematica can be used to monitor patterns of chemicals that together become suspicious, instead of monitoring individual compounds. Grzybowski is working with the federal government to implement the software.

Chematica now is being commercialized. "We chose this name," Grzybowski said, "because networks will do to chemistry what Mathematica did to scientific computing. Our approach will accelerate synthetic design and discovery and will optimize synthetic practice at large."

.


Related Links
Northwestern University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Silicone Foul Release Coatings Show Most Promise at Managing Quagga and Zebra Mussels at Water and Hydropower Facilities
Denver CO (SPX) Aug 24, 2012
The Bureau of Reclamation has found that silicone foul release coatings may be an important tool for mitigating invasive quagga and zebra mussels' impacts to water and hydropower infrastructure. Allen D. Skaja, Ph.D., PCS, of Reclamation's Technical Service Center tested more than 50 coatings and metal alloys over three years at Parker Dam on the Colorado River. "The silicone foul release ... read more


TECH SPACE
New catalyst could improve production of glass alternatives

China to expand rare earths reserves: report

Elusive metal discovered

Northwestern scientists create chemical brain

TECH SPACE
Lockheed Martin Wins Role on Defense Information Systems Agency Program

Raytheon unveils cross domain strategy to securely access information via mobile devices

NATO Special Forces Taps Mutualink for Global Cross Coalition Communications

Northrop Grumman Demonstrates Integrated Receiver Circuit Under DARPA Program

TECH SPACE
ASTRA 2F touches down in French Guiana for Arianespace's next Ariane 5 dual-passenger mission

Satellite preparations move into full swing for the next Arianespace Soyuz mission from French Guiana

Russian Booster Rocket Lifts US Satellite in Seaborne Launch

India's GSAT-10 satellite continues its checkout for the upcoming Arianespace Ariane 5 mission

TECH SPACE
Fourth Galileo satellite reaches French Guiana launch site

A GPS in Your DNA

Next Galileo satellite reaches French Guiana launch site

Raytheon completes GPS OCX iteration 1.4 Critical Design Review

TECH SPACE
India's first Embarer AWAC headed home

ReAgent Supports Space Balloon Project

Enstrom completes Thai helicopter delivery

Peru on track to build new Cusco airport

TECH SPACE
A new route to dissipationless electronics

Electronic Read-out of Quantum B

IBM buys flash memory firm

NIST's speedy ions could add zip to quantum computers

TECH SPACE
Landsat Data Continuity Mission Environmental Testing is Underway

Expert Analysis of Energy Infrastructure Using HiRes Satellite Imagery

Vecmap tracks the Asian bush mosquito

NASA Selects Combined Data Services Contract For Polar Satellites

TECH SPACE
Earthworms soak up heavy metal

Italians protest against pollution from steelworks

Vietnam, US begin historic Agent Orange cleanup

Worldwide increase of air pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement