|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Bristol, UK (SPX) Apr 25, 2014
A breakthrough in the design of signal amplifiers for mobile phone masts could deliver a massive 200MW cut in the load on UK power stations, reducing CO2 emissions by around 0.5 million tonnes a year. Funded by the Engineering and Physical Sciences Research Council (EPSRC), the Universities of Bristol and Cardiff have designed an amplifier that works at 50 per cent efficiency compared with the 30 per cent now typically achieved. Currently, a 40W transmitter in a phone mast's base station* requires just over 130W of power to amplify signals and send them wirelessly to people's mobiles. The new design, however, enables the transmitter to work effectively while using just 80W of power. If 10,000 base stations in the UK were fitted with the new amplifier, it is estimated that the total saving would amount to half the output of a mid-size, 400MW power station. There are currently around 50,000 phone mast base stations in the UK,** so the potential energy and carbon-saving benefits could be even greater. The team's development of a less power-hungry amplifier has focused on devising sophisticated new computing algorithms for incorporation into its inbuilt electronic management system, as well as on making a number of adjustments to the amplifier hardware. Dr Kevin Morris, project leader and Reader in Radio Frequency Engineering, Department of Electrical and Electronic Engineering at the University of Bristol, said: "This new amplifier design represents a step change in energy efficiency that could make a really valuable contribution to meeting the UK's carbon reduction targets." The team have also succeeded in simplifying the whole amplifier design process, which is of vital importance to encouraging widespread take-up of the project's findings. "Traditionally, designing signal amplifiers for base stations has been a long, complex process involving a trial-and-error approach and producing one-off solutions," Dr Morris explained. "This has fuelled a reluctance to develop new amplifier designs. To get over that barrier, we've made it a priority to ensure our design is easily replicable." The team are now working with a major electronics company to take some of the project's key findings towards commercialisation. Follow-up funding has also been secured through an Impact Acceleration Grant awarded by EPSRC. Results from the project were presented at CeBIT 2014, a major trade fair for the digital industry held in Hanover, Germany.
Related Links Engineering and Physical Sciences Research Council Satellite-based Internet technologies
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |