|
. | . |
|
by Staff Writers Eugene, OR (SPX) Aug 24, 2012
University of Oregon chemists have identified a catalyst that could dramatically reduce the amount of waste made in the production of methyl methacrylate, a monomer used in the large-scale manufacturing of lightweight, shatter-resistant alternatives to glass such as Plexiglas. David Tyler, Charles J. and M. Monteith Jacobs Professor of Chemistry, presented his findings Tuesday, Aug. 21, at the national meeting of the American Chemical Society in Philadelphia. Global production of methyl methacrylate was 4 million metric tons in 2010. Each kilogram produced also yields 2.5 kilograms of ammonium hydrogen sulfate, a corrosive byproduct that is not usable. Disposal of ammonium hydrogen sulfate is extremely energy intensive, consuming 2 percent of the energy used in Texas annually. Tyler's team has identified a catalyst that doesn't produce ammonium hydrogen sulfate. "There were some really fundamental chemical reasons why previous catalysts didn't work with this process," Tyler said. "We've found a catalyst that overcomes all of those objections." With the identification of a working catalyst, Tyler will focus his research on how to accelerate the conversion to methyl methacrylate. The industrial standard for a practical catalyst is conversion of acetone cyanohydrin into methyl methacrylate in the span of a minute or two, Tyler said.
Related Links University of Oregon Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |