Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
New NIST metamaterial gives light a one-way ticket
by Staff Writers
Washington DC (SPX) Jul 03, 2014


This is a schematic of NIST's one-way metamaterial. Forward traveling green light (left) or red light passes through the multilayered block and comes out at an angle due to diffraction off of grates on the surface of the material. Light traveling in the opposite direction (right) is almost completely filtered by the metamaterial and can't pass through. Image courtesy Xu/NIST.

The light-warping structures known as metamaterials have a new trick in their ever-expanding repertoire. Researchers at the National Institute of Standards and Technology (NIST) have built a silver, glass and chromium nanostructure that can all but stop visible light cold in one direction while giving it a pass in the other.* The device could someday play a role in optical information processing and in novel biosensing devices.

In recent years, scientists have designed nanostructured materials that allow microwave or infrared light to propagate in only one direction. Such structures hold potential for applications in optical communication-for instance, they could be integrated into photonic chips that split or combine signals carried by light waves.

But, until now, no one had achieved one-way transmission of visible light, because existing devices could not be fabricated at scales small enough to manipulate visible light's short wavelengths. (So-called "one-way mirrors" don't really do this-they play tricks with relative light levels.)

To get around that roadblock, NIST researchers Ting Xu and Henri Lezec combined two light-manipulating nanostructures: a multi-layered block of alternating silver and glass sheets and metal grates with very narrow spacings.

The silver-glass structure is an example of a "hyperbolic" metamaterial, which treats light differently depending on which direction the waves are traveling. Because the structure's layers are only tens of nanometers thick-much thinner than visible light's 400 to 700 nanometer wavelengths-the block is opaque to visible light coming in from outside. Light can, however, propagate inside the material within a narrow range of angles.

Xu and Lezec used thin-film deposition techniques at the NIST NanoFab user facility to build a hyperbolic metamaterial block.Guided by computer simulations, they fabricated the block out of 20 extremely thin alternating layers of silicon dioxide glass and silver.

To coax external light into the layered material, the researchers added to the block a set of chromium grates with narrow, sub-wavelength spacings chosen to bend incoming red or green light waves just enough to propagate inside the block. On the other side of the block, the researchers added another set of grates to kick light back out of the structure, although angled away from its original direction.

While the second set of grates let light escape the material, their spacing was slightly different from that of the first grates. As a result, the reverse-direction grates bent incoming light either too much or not enough to propagate inside the silver-glass layers. Testing their structures, the researchers found that around 30 times more light passed through in the forward direction than in reverse, a contrast larger than any other achieved thus far with visible light.

Combining materials that could be made using existing methods was the key to achieving one-way transmission of visible light, Lezec says. Without the intervening silver-and-glass blocks, the grates would have needed to be fabricated and aligned more precisely than is possible with current techniques. "This three-step process actually relaxes the fabrication constraints," Lezec says.

In the future, the new structure could be integrated into photonic chips that process information with light instead of electricity. Lezec thinks the device also could be used to detect tiny particles for biosensing applications. Like the chrome grates, nanoscale particles also can deflect light to angles steep enough to travel through the hyperbolic material and come out the other side, where the light would be collected by a detector.

Xu has run simulations suggesting such a scheme could provide high-contrast particle detection and is hoping to test the idea soon. "I think it's a cool device where you would be able to sense the presence of a very small particle on the surface through a dramatic change in light transmission," says Lezec.

T. Xu and H.J. Lezec. Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nature Communications. 2014, 5, DOI: 10.1038/ncomms5141. http://www.nature.com/ncomms/2014/140617/ncomms5141/full/ncomms5141.html

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
New ultrastiff, ultralight material developed
Boston MA (SPX) Jun 24, 2014
What's the difference between the Eiffel Tower and the Washington Monument? Both structures soar to impressive heights, and each was the world's tallest building when completed. But the Washington Monument is a massive stone structure, while the Eiffel Tower achieves similar strength using a lattice of steel beams and struts that is mostly open air, gaining its strength from the geometric arrang ... read more


TECH SPACE
ELASTx Stretches Potential for Future Communications Technologies

Does 3D printing have the right stuff?

Ghost writing the whip

NOAA GOES-R Satellite Black Wing Ready for Flight

TECH SPACE
Thales enhancing communications of EU peacekeepers

Exelis enhancing communications for NATO country

Chemring integrates new system with Resolve

Northrop Grumman Receives Funding for Electronic Warfare Systems for US Army and Navy

TECH SPACE
Indian rocket launch delayed three minutes to avoid space debris

Indian launches PSLV C-23 rocket carrying five foreign satellites

NASA's sounding rocket crashes into Atlantic

NASA aborts launch of OCO-2

TECH SPACE
China's domestic navigation system accesses ASEAN market

US Refusal to Host Russian Navigation Stations Political

Soyuz Rocket puts Russian GLONASS-M navigation satellite into orbit

Russia may join forces with China to compete with US, European satnavs

TECH SPACE
Northrop Grumman received new order for E-2D aircraft

Britain's aerospace industry outpaces rest of economy

New Zealand, others to receive CAE flight training systems

Unrest in Iraq could delay delivery of US F-16s

TECH SPACE
Move Over, Silicon, There's a New Circuit in Town

Swell new sensors

Ultra-thin wires for quantum computing

Quantum computation: Fragile yet error-free

TECH SPACE
Taking NASA-USGS's Landsat 8 to the Beach

ENSO and the Indian Monsoon...not as straightforward as you'd think

More People Means More Plant Growth

Norway Gets TerraSAR-X Direct Receiving Station

TECH SPACE
China sets up specialised pollution tribunal

Separating finely mixed oil and water

All the world's oceans have plastic debris on their surface

Pollution blamed for drop in Beijing tourism: Xinhua




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.