Subscribe free to our newsletters via your
. Space Industry and Business News .




AEROSPACE
New Climate-studying Imager Makes First Balloon Flight
by Andrea Martin for NASA Earth Science News
Washington DC (SPX) Nov 04, 2013


The high-altitude balloon that carried the HySICS instruments to the outermost part of Earth's atmosphere was inflated with helium at sunrise on the morning of Sept. 29, 2013. Image Credit: HySICS Team/LASP.

Understanding Earth's dynamic climate requires knowledge of more than just greenhouse gases. One of the key measurements scientists measure is reflected solar radiance, or the amount of outgoing sunlight energy scattered from Earth's surface and atmosphere. Watching solar radiances over time helps scientists gauge and better understand environmental changes like global warming.

Earth-observing satellites have provided measurements of solar radiances for many years, but recent technology advances could lead to new measurements with a higher level of accuracy from those currently available.

The next generation, higher-accuracy data would enable climate predictions and trends that could be clearly seen using data sets that are much shorter in duration than the current data sets needed for these types of studies, thus enabling faster detection of climate trends and more timely results.

NASA's Earth Science Technology Office is supporting the development of a new generation of scientific instrument that may one day orbit Earth. The HyperSpectral Imager for Climate Science (HySICS), developed by Greg Kopp of the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP), is a testbed demonstrating improved techniques for future space-based radiance studies.

HySICS made its inaugural engineering balloon flight from Fort Sumner, N.M., the morning of Sept. 29. Balloon flights provide realistic, space-like conditions at a fraction of the cost of launching an instrument into space, so is an ideal means of testing new technologies.

A 60-story tall balloon lifted HySICS to an altitude of nearly122,000 feet, far above the majority of Earth's atmosphere, heights where the sky is nearly as black as in space. From this vantage point HySICS, aided by the pointing precision of NASA's Wallops Arc Second Pointer (WASP), was able to make measurements of Earth, the sun and the moon during both daylight and night hours.

The hyperspectral imager, which spans a 10 kilometer field of view of Earth from the balloon's altitude, collected radiance data for nearly half of its eight and a half hour flight.

The instrument periodically calibrated itself by performing highly accurate radiance scans of the sun and moon. This calibration ensures that the radiance measurements collected of Earth are able to reach the high-accuracy data needs of climate researchers.

After landing safely south of Wheeler, Texas, HySICS was recovered and returned to LASP. The data collected during the engineering flight will be used to improve the instrument over the next year and to further advance the science algorithms used to process the data.

HySICS images scenes onto a single focal plane array at wavelengths between 350 and 2,300 nanometers, covering the extremely important solar and near infrared spectrum containing most of the sun's emitted energy. Using only a single array allows HySICS to be smaller and lighter than many imagers, a feature necessary for cost-effective space-based Earth observing missions.

A second balloon flight is planned for September 2014. During that demonstration flight, HySICS should be able to reach its goal of collecting the most accurate solar radiance measurements (calibrated to the sun to better than 0.2 percent radiometric accuracy) that have ever been made of Earth. In addition, the HySICS lunar observations should provide the highest accuracy radiance measurements ever of the moon, having great value to lunar calibrations for other instruments.

The data HySICS collected on the engineering flight - and will collect on the following demonstration flight - help to refine the instrumentation needed for radiance and other hyperspectral studies. Not only is HySICS able to act as a space-based radiance testbed, but the measurements the instrument can make will be of great benefit to both the Earth and lunar science communities.

.


Related Links
NASA's Earth Science Technology Office
Aerospace News at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








AEROSPACE
US military's airship programs lose altitude
Washington (AFP) Oct 26, 2013
The US military has invested billions in blimp-like aircraft to track militants planting roadside bombs but the spyship experiment is losing altitude because of technical failures and changing priorities. The lighter-than-air projects were billed as an innovative revival of an old aircraft design to conduct "unblinking" surveillance on the battlefield - at a fraction of the cost of fuel-gu ... read more


AEROSPACE
Historic Demonstration Proves Laser Communication Possible

UNC neuroscientists discover new 'mini-neural computer' in the brain

Birthing a new breed of materials

Unique chemistry in hydrogen catalysts

AEROSPACE
Latest AEHF Comms Payload Gets Boost From Customized Integrated Circuits

Northrop Grumman Cobham Intercoms Receives First Order For AN VIC-5 Enhanced Vehicular Comms

Raytheon produces new US Army satellite communications terminals ahead of schedule

Lockheed Martin To Continue In Theater Support for Real-Time Surveillance

AEROSPACE
ILS Proton Launches Sirius FM-6 Satellite

Boeing Finalizes Agreement for Kennedy Space Center Facility

Russia Plans to Spend $22M on Soyuz-2 Launch Pad

Ariane 5 arrives at the Spaceport's Final Assembly Building for payload installation

AEROSPACE
Russia, US to protect satellite navigation systems at UN level

Russia Retires Faulty Glonass-M Satellite

Raytheon demonstrates first Direct Geo-Positioning Metric Sensor

Britain considering car-tracking 'bullet' technology

AEROSPACE
New Climate-studying Imager Makes First Balloon Flight

Raytheon's Joint Standoff Weapon C-1 demonstrates networked capability with E-2D aircraft

US military's airship programs lose altitude

Boeing, Lockheed team up for new US Air Force bomber

AEROSPACE
JQI team 'gets the edge' on photon transport in silicon

Atomically Thin Device Promises New Class of Electronics

Tiny Sensors Put the Squeeze on Light

Quantum conductors benefit from growth on smooth foundations

AEROSPACE
Astrium delivers microwave radiometer for the Sentinel-3A satellite

Time is ripe for fire detection satellite

Canadian Satellite SCISAT Celebrating 10 Years Of Scientific Measurements

Developing Next Generation K-12 Science Standards

AEROSPACE
UCSB researcher documents the enduring contaminant legacy of the California gold rush

New low-cost, nondestructive technology cuts risk from mercury hot spots

Pollution debated in Canada's oil fields

Mustard gas traces found close to Poland's Baltic Sea coast




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement