. | . |
|
. |
by Staff Writers Munich, Germany (SPX) Apr 24, 2012
The SHEFEX II (SHarp Edge Flight EXperiment) spacecraft successfully withstood vibration on a shaker and spinning at two rotations per second. These tests represented the final simulation of the conditions that the space vehicle will be subjected to during its launch in the summer of 2012. Researchers at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) will use SHEFEX to investigate how a space vehicle can re-enter Earth's atmosphere as safely and cost-effectively as possible following a spaceflight. Equipped with numerous experiments, a camera, pressure, temperature and heat flow sensors, and antennas - the SHEFEX spacecraft will lift off from the rocket range on the Norwegian island of Andoya, reach an altitude of 250 kilometres and later re-enter the atmosphere at 11 times the speed of sound. "With this mission, we are entering uncharted technological territory," says project leader Hendrik Weihs from the DLR Institute of Structures and Design. The space vehicle must withstand temperatures of over 2000 degrees Celsius as it re-enters and lands by parachute in the vicinity of Spitsbergen. The shape of the experimental vehicle is particularly unusual; where conventional spacecraft tend to have rounded contours, SHEFEX II has straight edges and corners. "The straight-edged shape has the benefit of making manufacture of the thermal protection system significantly less costly. The straight leading edge also improves its aerodynamic properties," explains Weihs. The vehicle consists of separate, smooth faces that are easier, and therefore less expensive, to manufacture than, for example, the individually shaped tiles on a Space Shuttle. The researchers are also using the space vehicle to test various thermal protection systems during the 45-second re-entry phase. A total of six DLR institutes and facilities are involved in the SHEFEX II mission: the Institute of Aerodynamics and Flow Technology, the Institute of Structures and Design, the Institute of Flight Systems, the Institute of Materials Research, the Institute of Space Systems and the MORABA mobile rocket base (MObile RAketen BAsis).
Vibrating and rotating at high speed "In order to stabilise itself during flight, the rocket must rotate continuously," explains John Turner, who is responsible for the deployment of MORABA - which will launch SHEFEX from the Norwegian base. The engineers balanced the vehicle in preparation for this rotation similarly to how a car wheel is balanced. Evaluation on the shaker was also part of the final mechanical tests. In the first few seconds after launch, a rocket payload is subject to severe vibration - the shaker simulates this situation. "After each test we checked that everything was still functioning properly."
Test programme for re-entry technology The aim of the three missions is to gather information for the design of a new type of re-entry vehicle able to return to Earth undamaged - and that is therefore reusable - following a period of experimentation in microgravity. The REX Free Flyer (Returnable Experiments in Space) is being looked at as an initial application example. As of 2020, this sharp-edged space glider could be flying microgravity experiments for a few days and then landing again at a conventional airport. "This would narrow the gap between a few minutes of microgravity, as with the DLR TEXUS flights, and the permanent microgravity on board the International Space Station," says Hendrik Weihs.
Mission SHEFEX Space Technology News - Applications and Research
|
. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |