Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Inspired by Nature, Researchers Create Tougher Metal Materials
by Staff Writers
Raleigh NC (SPX) Jul 11, 2014


This image illustrates the gradient structure concept. Image courtesy Yuntian Zhu.

Drawing inspiration from the structure of bones and bamboo, researchers have found that by gradually changing the internal structure of metals they can make stronger, tougher materials that can be customized for a wide variety of applications - from body armor to automobile parts.

"If you looked at metal under a microscope you'd see that it is composed of millions of closely-packed grains," says Yuntian Zhu, a professor of materials science and engineering at NC State and senior author of two papers on the new work. "The size and disposition of those grains affect the metal's physical characteristics."

"Having small grains on the surface makes the metal harder, but also makes it less ductile - meaning it can't be stretched very far without breaking," says Xiaolei Wu, a professor of materials science at the Chinese Academy of Sciences' Institute of Mechanics, and lead author of the two papers. "But if we gradually increase the size of the grains lower down in the material, we can make the metal more ductile.

You see similar variation in the size and distribution of structures in a cross-section of bone or a bamboo stalk. In short, the gradual interface of the large and small grains makes the overall material stronger and more ductile, which is a combination of characteristics that is unattainable in conventional materials.

"We call this a 'gradient structure,' and you can use this technique to customize a metal's characteristics," Wu adds. Wu and Zhu collaborated on research that tested the gradient structure concept in a variety of metals, including copper, iron, nickel and stainless steel. The technique improved the metal's properties in all of them.

The research team also tested the new approach in interstitial free (IF) steel, which is used in some industrial applications.

If conventional IF steel is made strong enough to withstand 450 megapascals (MPa) of stress, it has very low ductility - the steel can only be stretched to less than 5 percent of its length without breaking. That makes it unsafe. Low ductility means a material is susceptible to catastrophic failure, such as suddenly snapping in half. Highly ductile materials can stretch, meaning they're more likely to give people time to respond to a problem before total failure.

By comparison, the researchers created an IF steel with a gradient structure; it was strong enough to handle 500 MPa and ductile enough to stretch to 20 percent of its length before failing.

The researchers are also interested in using the gradient structure approach to make materials more resistant to corrosion, wear and fatigue.

"We think this is an exciting new area for materials research because it has a host of applications and it can be easily and inexpensively incorporated into industrial processes," Wu says.

"Synergetic Strengthening by Gradient Structure" Authors: X.L. Wu, P. Jiang, L. Chen, J.F. Zhang and F.P. Yuan, Chinese Academy of Sciences; Y.T. Zhu, North Carolina State University

.


Related Links
NC State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Carbon-fiber epoxy honeycombs mimic performance of balsa wood
Boston MA (SPX) Jul 11, 2014
In wind farms across North America and Europe, sleek turbines equipped with state-of-the-art technology convert wind energy into electric power. But tucked inside the blades of these feats of modern engineering is a decidedly low-tech core material: balsa wood. Like other manufactured products that use sandwich panel construction to achieve a combination of light weight and strength, turbi ... read more


TECH SPACE
Even geckos can lose their grip

Platonic solids generate their four-dimensional analogues

Consider the 'Anticrystal'

Inspired by Nature, Researchers Create Tougher Metal Materials

TECH SPACE
Thales enhancing communications of EU peacekeepers

Exelis enhancing communications for NATO country

Chemring integrates new system with Resolve

Northrop Grumman Receives Funding for Electronic Warfare Systems for US Army and Navy

TECH SPACE
Eco-Friendly 'Angara' Rocket Installed On Plesetsk Launch Pad

Singapore launches its first nano-satellite

NASA's sounding rocket crashes into Atlantic

NASA aborts launch of OCO-2

TECH SPACE
US Refusal to Host Russian Navigation Stations Political

China's domestic navigation system accesses ASEAN market

Soyuz Rocket puts Russian GLONASS-M navigation satellite into orbit

Russia may join forces with China to compete with US, European satnavs

TECH SPACE
China's own dreamliner prepares for takeoff

Northrop Grumman received new order for E-2D aircraft

Britain's aerospace industry outpaces rest of economy

New Zealand, others to receive CAE flight training systems

TECH SPACE
IBM to spend $3 bn aiming for computer chip breakthrough

Move Over, Silicon, There's a New Circuit in Town

Swell new sensors

Ultra-thin wires for quantum computing

TECH SPACE
Taking NASA-USGS's Landsat 8 to the Beach

Tips from space give long-range warning of flood risk

ENSO and the Indian Monsoon...not as straightforward as you'd think

Norway Gets TerraSAR-X Direct Receiving Station

TECH SPACE
IBM to work to curb China pollution

China sets up specialised pollution tribunal

Separating finely mixed oil and water

All the world's oceans have plastic debris on their surface




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.