. | . |
|
. |
by Staff Writers Bochum, Germany (SPX) Mar 23, 2012
The alphabet of data processing could include more elements than the "0" and "1" in future. An international research team has achieved a new kind of bit with single electrons, called quantum bits, or qubits. With them, considerably more than two states can be defined. So far, quantum bits have only existed in relatively large vacuum chambers. The team has now generated them in semiconductors. They have put an effect in practice, which the RUB physicist Prof. Dr. Andreas Wieck had already theoretically predicted 22 years ago. This represents another step along the path to quantum computing. Together with colleagues from Grenoble and Tokyo, Wieck from the Chair of Applied Solid State Physics reports on the results in the journal Nature Nanotechnology.
Conventional bits "The extension from bits to quantum bits can dramatically increase the computational power of computers" says the physicist.
The new bit generation According to quantum theory, however, a particle can be in several states simultaneously, that is, it can quasi fly through both channels at the same time. These overlapping states can form an extensive alphabet of data processing.
A recipe for qubits When the two paths come together again, there is interference, i.e., the two electron waves overlap and quantum bits with different overlapping states are generated.
Controlling electrons on defined paths
How the dual channel works "Unfortunately, not all the electrons take part in this process, so far it's only a few percent" commented Wieck. "Some students in my department are, however, already working on growing crystals with higher electron densities".
Ruhr-University Bochum Space Technology News - Applications and Research
|
. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |